Packaging and Delivering Software with the
Image Packaging System

A developer's guide

5

ORACI_€® 2011-11-07:16:40:12-NZDT 8e2ee40e0bfb tip

Copyright © 2011, Oracle and/or its affiliates. Al rights reserved.
Thi s docunent is provided for information purposes only and the
contents hereof are subject to change w thout notice. This docunment is
not warranted to be error-free, nor subject to any other warranties or
condi ti ons, whether expressed orally or inplied in | aw, including
inmplied warranties and conditions of merchantability or fitness for a
particul ar purpose. W specifically disclaimany liability with
respect to this docunent and no contractual obligations are formed
either directly or indirectly by this docunment. This document may not
be reproduced or transmitted in any formor by any neans, electronic
or mechanical, for any purpose, w thout our prior witten perm ssion.
Oracl e and Java are registered trademarks of Oracle and/or its
affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel
Corporation. Al SPARC trademarks are used under |icense and are
trademarks or registered trademarks of SPARC International, Inc. AM,
Opteron, the AMD | ogo, and the AMD Opteron | ogo are trademarks or

regi stered trademarks of Advanced Mcro Devices. UN X is a registered
trademark |icensed through X/ Cpen Conpany, Ltd. 0611

1 Packaging and Delivering Software with the Image Packaging System

Preface

Preface

In Oracle Solaris 11 and onwards, system software is packaged with the Image Packaging System, or IPS. IPS
takes care of installing new software and upgrading that software.

This manual is for developers and advanced administrators who want to better understand IPS, how to use it to
package their own software, and want to understand how Oracle Solarisis packaged with IPS.

Special attention is given to the underlying design concepts and design patterns so that readers can more readily
understand and utilize the more advanced features of I1PS.

How this book is organized

How this book is organized

Chapter 1 - Design Goals and Concepts, outlines the basic design philosophy of IPS and its expression as
software patterns.

Chapter 2 - Package Lifecycle, provides an overview of the software package lifecycle with IPS.

Chapter 3 - Basic Terminology, lays out the basic terminology and describes the various components that form
IPS.

Chapter 4 - Packaging Software with IPS, gets the new user started constructing their own packages.
Chapter 5 - Installing, Removing, and Updating Software Packages, shows basic operation of pkg(1).

Chapter 6 - Specifying Dependencies, explains the different types of IPS dependencies and how they can be
used to construct working software systems.

Chapter 7 - Allowing Variations, explains how variants, facets and mediated links are used to allow software
publishers to define multiple installation forms for their packages.

Chapter 8 - Modifying Package Manifests Programmatically, explains how package manifests can be machine
edited to permit the automated annotation and checking of package manifests.

Chapter 9 - Causing System Change With SMF, explains how to use the Service Management Facility to
automatically handle any necessary system changes that should occur as aresult of package installation.

Chapter 10, Advanced Update, deals with more complex package upgrade issues, and describes several features
in IPS designed to simplify these problems.

Chapter 11, Sgning Packages, explains how package signing works and how developers and QA organizations
can sign either new or existing, already signed packages.

Chapter 12, Handling Non-Global Zones, describes how IPS handles zones and discusses those cases where
package devel opers should be aware of zones.

Chapter 13, How IPS Features Are Used When Packaging the Oracle Solaris OS, describes how the packages
for the operating system are constructed and how the various dependency types in IPS are used to define
working package sets.

Chapter 14, Republishing Packages, describes how administrators can modify existing packages if needed for
local conditions.

Appendix A: Classifying Packages, contains info.classification scheme definitions.

Appendix B: Converting SYR4 packages to IPS, gives an example of converting an SVR4 package to IPS, and
highlights some areas that might need special attention.

3 Packaging and Delivering Software with the Image Packaging System

Chapter 1

Chapter 1

Design Goals and Concepts

This chapter discusses |PS design goals and concepts, and discusses some of the implications of those choices.

IPS is designed to eliminate some long-standing issues with previous software distribution, installation and
maintenance mechanisms that have caused significant problems for Oracle Solaris customers,
developers/maintainers and ISVs.

Principle IPS design concepts and goals include:

» Minimize planned downtime by making software update possible while machines are in production.

» Minimize unplanned downtime by supporting quick reboot to known working software configurations.
» Automate, as much as possible, the installation of new software or updates to existing software.

* Resolve the difficulties with ever-increasing software size and limited distribution media space.

* Ensure that it is possible to determine whether or not a package is correctly installed as defined by the author
(publisher) of the package; such a check should not be spoofable.

* Incorporate mechanisms to allow for the easy virtualization of Oracle Solaris at a variety of levels - and zones
in particular.

 Reduce the effort required to generate patches/upgrades for existing systems.
* Allow other software publishers (1SV's and end-users themselves) to create and publish packages using | PS.
These goals led fairly directly to the following ideas:

* Leverage ZFS snapshot and clone facilities to dynamically create boot environments on an as-needed basis.

This means that:

* Oracle Solaris 11 requires ZFS as the root file system; zone file systems need to be on ZFS as well.
« Users can create as many boot environments as desired.

» The packaging system can automatically create boot environments on an as-needed basis, either for
backup purposes prior to modifying the running system, or for installation of a new version of the
Oos.

« Eliminate duplicated mechanisms and code used to install, patch and update Oracle Solaris.

Thisresultsin severa significant changes to the way Oracle Solaris is maintained. In particular:

* All OS software updates and patching are done directly with IPS.
* Any time anew packageisinstalled, it is already exactly at the correct version.

* The requirement for unspoofable verification of package installation has interesting consequences.

 If a package needs to support installation in multiple ways, those ways must be specified by the
developer, so the verification process could take this into account.

 Scripting is inherently unverifiable since we cannot determine the intent of the script writer. This, along
with other issues mentioned later, led to the elimination of scripting during packaging operations.

* There can be no mechanism for the package to edit its own manifest, since verification is then
impossible.

Software Self-Assembly

« If the administrator wants to install a package in a manner incompatible with the original publisher's
definition, we should enable the administrator to easily republish the package he wants to alter so that the
scope of his changes are clear, not lost across upgrades, and can be verified in the same manner as the
original package.

» The need to avoid size restrictions led to a software repository model, accessed using several different
methods. Different repository sources can be composited to provide a complete set of packages, and
repositories can be distributed as a single file. In this manner, no single mediais ever required to contain all the
available software. In order to support disconnected/firewalled operations, tools are provided to copy and
merge repositories.

» The desire to enable multiple (possibly competing) software publishers led us to driving all the packaging
metadata into the packages themselves, so no master database of all packages, dependencies, etc. exists. A
catalog of available packages from a software publisher is part of the repository for performance reasons, but it
can be regenerated from the data contained in the packages at will.

Software Self-Assembly

Given the goals and ideas above, IPS introduces the general concept of software self-assembly: Any collection of
installed software on a system should be able to build itself into a working configuration when that system is booted,
by the time the packaging operation completes, or at software runtime.

Software self-assembly eliminates the need for install-time scripting in IPS. The software is responsible for its own
configuration rather than relying on the packaging system to perform that configuration on behalf of the software.
Software self-assembly also enables the packaging system to safely operate on aternate images, such as boot
environments that are not currently booted, or offline zone roots. In addition, since the self-assembly is performed
only on the running image, the package developer does not need to cope with cross-version or cross-architecture
run-time contexts.

There are obviously some aspects of preparing an operating system image that must be done before boot, and IPS
manages this transparently. These items include updating boot blocks, preparing a boot archive (ramdisk), and on
some architectures, managing the menu of boot choices.

Several idioms are employed to facilitate software self-assembly:

* Actions

Actions are the atomic units of software delivery in IPS. Each action delivers a single software object
- either a file system object, such as afile, directory or link, or a more complex software construct,
such as a user, group or driver. These more complex action types, previously handled by SVR4 class
action scriptsin older Oracle Solaris releases no longer require scripting.

Actions, grouped together into packages, can be installed, updated and removed from both live
images as well as offline images.

While IPS alows for the set of known action types to be extended in the packaging system, during
development we have found that the action types delivered at present are sufficient for all packaged
software in Oracle Solaris. It is not expected that package developers will need to create new action
types.

Actions are discussed in more detail in Chapter 3.
« Composition

Rather than maintaining complex configuration files, that require extensive scripting in order to
update each configuration file during packaging operations, |PS encourages package authors to
deliver fragments of the complete configuration file.

5 Packaging and Delivering Software with the Image Packaging System

Designing Your Package

The packaged application either accesses those fragments directly when reading its configuration, or
the fragments can be assembled into the complete configuration file before reading it.

A good example of thisisthe /et c/ user_attr configuration file, used by Oracle Solaris to
configure extended attributes for roles and users on the system.

This file is now used for local changes only, and Oracle Solaris has been modified to read its
complete configuration from the separate files delivered into the directory / et ¢/ user _attr. d.
Multiple packages deliver fragments of the complete configuration, with no additional scripting
needed when fragments are installed, removed or updated.

Obvioudly this requires that the software is written with composition in mind, which isn't aways
possible.

An alternative way to support the concept of composition, is for a service to treat the configuration
file as volatile, and re-assemble it when when fragments of the configuration are installed, removed,
or updated. Typically, this assembly is performed by an SMF service. We will discuss thisidiom in
the next item.

» Actuators & SMF services

An actuator is a tag applied to any action delivered by the packaging system that causes a system
change when that action isinstalled, removed, or updated.

These changes are typically implemented as SMF services.

We can create SMF services that are responsible for configuring software directly, or constructing
configuration files using data delivered in the SMF manifest or sourced from files installed on the
system.

Since SMF services have arich syntax to express dependencies, we can ensure that each service only
runs when al of its dependencies have been met.

Oracle Solaris includes an SMF milestone,
svc:/ m | estone/sel f-assenbl y-conpl et e: def aul t, upon which can any service can
add itself as a dependency. The intention is that once the booting operating system has reached this
milestone, al self-assembly operations have compl eted.

Oracle Solaris supports a special type of zone called an Immutable Zone, where the zone can be
configured to have restricted write-access to portions of it's file system (see the discussion of
file-mac-profile inthezonecfg(1lM manual page)

In these types of zones, to complete self-assembly, they are first booted read/write as far as the
sel f-assenbl y- conpl et e SMF milestone, after which they are automatically booted to the
requiredfi | e-mac- profil e setting.

Designing Your Package

Many of the good packaging criteria present trade-offs among themselves. It will often be difficult to satisfy all
requirements equally. These criteria are presented in order of importance; however, this sequence is meant to serve
as a flexible guide depending on the circumstances. Although each of these criteria is important, it is up to you to
optimize these requirements to produce a good set of packages.

Naming Your Package

Oracle Solaris uses a hierarchical naming strategy for |PS packages. Wherever possible, design your package names
to fit into the same scheme. Try to keep the last part of your package name reasonably unique such that pkg
i nstall <nane> doesn't report conflicts.

Optimize for Client-Server Configurations

Optimize for Client-Server Configurations

You should consider the various patterns of software use (client and server) when laying out packages. Good
packaging design divides the affected files to optimize installation of each configuration type. For example, for a
network protocol implementation, it should be possible to install the client without necessarily installing the server.
Note that if client and server share implementation components, a base package containing the shared bits is
necessary.

Package by Functional Boundaries

Packages should be self-contained and distinctly identified with a set of functionality. For example, a package
containing ZFS should contain al ZFS utilities and be limited to only ZFS binaries.

Packages should be organized from a customer's point of view into functional units.

Package Along License or Royalty Boundaries

Put code that requires royalty payments due to contractual agreements or that has distinct software license termsin a
dedicated package or group of packages. Do not disperse the code into more packages than necessary.

Overlap in Packages

Packages that overlap (deliver differing content to the same file system locations, for example) cannot be installed at
the same time. Since this error might not be caught until final planning for installation, it can provide a poor user
experience, though pkgl i nt (1) can help to detect this during the package authoring process.

If the package content must differ, declare an exclude dependency so that IPS will understand that these packages are
not to be installed together.
Sizing Considerations

A package represents (modul o facets, discussed later) a single unit of software, and is either installed or not installed.
Packages that are always installed together should be combined. Since IPS downloads only changed files on update,
even large packages update quickly if change islimited.

7 Packaging and Delivering Software with the Image Packaging System

Chapter 2

Chapter 2

Package Lifecycle

This chapter provides an overview of the software package lifecycle with IPS.

Software packages go through a detailed lifecycle with IPS. Understanding the various phases of the package
lifecycle will help the devel oper and administrator optimize their results. The following sections provide a high-level
description of each state in the package lifecycle:

Creation

Packages can be created by anybody. IPS does not impose any particular software build system or directory
hierarchy on the part of package authors. More detail about package creation is available in Chapter 4. Aspects
of package creation are discussed throughout the remaining chapters of this guide.

Publication

Packages are published to an IPS repository, either viaHTTP or to the file system. If desired, once packages are
published they can converted to a. p5p package archive file. To access software from an IPS repository, the
repository can be added to the system, using the pkg set - publisher command, or accessed as a
temporary source, using the- g flagto pkg(1) . Examples of package publication are shown in Chapter 4.

Installation

Packages can be installed on a system, either from an |IPS repository, accessed over http://, https:// or file://
URLSs, or installed directly from a. p5p package archive. Package installation is described in more detail in
Chapter 5.

Updates
Updated versions of packages might become available, either published to an IPS repository, or delivered as a
new . p5p package archive.
Installed packages can then be brought up to date, either individually, or as part of an entire system update.

It is important to note that 1PS does not use the same concept of "patching” as the SVR4 packaging system did:
all changes to packaged software are delivered by updated packages.

The packaging system is optimized to install only the changed portions delivered by an updated package, but
essentially, package updates are performed in much the same way as package installs. Package updating is
described in more detail in Chapter 5.

Renaming

During a package's lifecycle, it might be desirable to rename a package. Often this is done for organizational
reasons or to refactor packages.

Examples of package refactoring would be where there is an interest in combining several packages into a
single package, breaking a single package into multiple smaller packages, or a combination of the two.

IPS gracefully handles actions that move between packages, and has capabilities to allow old package names to
persist on the system, automatically installing the new packages when a user asks to install a renamed package.
Package renaming is described in more detail in Chapter 10.

http://
https://
file:///home/timf/projects/ips/dev-guide-putback-pkg.hg/doc/dev-guide/

Obsoletion

Obsoletion

Eventually a package might reach the end of its life. A package publisher might decide that a package will no
longer be supported, and that it will not have any more updates made available. IPS allows publishers to mark
such packages as obsol ete.

Obsolete packages can no longer be used as a target for most dependencies from other packages, and any
packages upgraded to an obsolete version are automatically removed from the system. Package obsoletion is
described in more detail in Chapter 10.

Removal

Finally, a package can be removed from the system assuming that no other packages have dependencies on it.
Package removal is described in more detail in Chapter 5.

9 Packaging and Delivering Software with the Image Packaging System

Chapter 3

Chapter 3

Basic Terminology

This chapter defines | PS terms and describes the | PS components.

Image

IPS is designed to install packages in an image. An image is a directory tree, and can be mounted in a variety of
locations as needed. Images are of three types:

Full

inafull image, all dependencies are resolved within the image itself and 1PS maintains the dependenciesin
a consistent manner;

Zone
in a zone image, |PS maintains the zone consistent with its global zone as defined by dependencies in the
packages,

User
not yet fully functional for Oracle Solaris.

In general, images are created or cloned by other software (installers, beadm(1M , zonecf g(1M, etc) rather than
directly by the user.

Package

IPS deals with al software installed on a system in the granularity of packages. Every package is represented by a
fault management resource identifier (FMRI), consisting of a publisher, a name, and a version, with the scheme
‘pkg’. For example:

pkg://solaris/systemlibrary@.5.11,5.11-0.175.0.0.0.2.1:20111019T082311Z

Here, ‘solaris’ is the publisher, ‘systemlibrary’ is the package name, and
‘0.5.11,5.11-0.175.0.0.0.2.1:20111019T082311Z’ isthe version.

Package names are hierarchical with an arbitrary number of components separated by forward slash (‘/ ') characters.
Package names form a single namespace across publishers; packages with the same name and version but different
publishers are assumed to be interchangeable in terms of external dependencies and interfaces. Package name
components are case sensitive and must start with a letter or number, but can include underscores ('), dashes (‘- '),
periods (‘. '), and plussigns (‘+') in later positions.

FMRIs can appear and can be referred to in abbreviated form. The scheme is typically unnecessary, leaving the
FMRI to start with either adouble slash (‘/ /') or asingle slash (‘/ '). When the first slash is doubled, the first word
following the dlash is the publisher name. When there is only a single leading slash, no publisher name is present,
and the package name is considered complete, or ‘rooted’.

Further abbreviation is possible by €liding leading components of package names. For instance,
/driver/ network/ et hernet/el000g can be reduced to network/ethernet/el000g,
et her net / e1000g, or even simply €1000g. Note that such abbreviation mighy cause the packaging client to
complain about ambiguous package names, in which case disambiguation can always be achieved by specifying the
full, rooted name. Typically package names are chosen to reduce possible ambiguities, even when referred to solely
by their last component. Some trailing components are common, however; in such cases, the last two components
should be unambiguous. Scripts should generally refer to packages by their full, rooted names.

10

Version

It is not possible to construct an abbreviated FMRI that contains a publisher name and only trailing package name
components.

The version is also often unnecessary; packages referred to without version will generally resolve to the latest
version of the package that can be installed. As explained below, versions themselves need not be complete.

FMRIs can also be referred to with patterns, where an asterisk (‘* ') can match any portion of a package name. Thus
/driver/*/el000g will expandto/ dri ver/ network/ et her net/el1000g, aswill / dri *00g.

Version

A package version consists of four sequences of integer numbers, separated by punctuation. The elements in the first
three sequences are separated by dots, and the sequences are arbitrarily long. Leading zeros in version components
(eg.'01. 1" or ‘1. 01") areforbidden, to allow for unambiguous sorting by package version.

An exampleversionis.
0.5.11,5.11-0.175.0.0.0.2.1:20111019T082311Z

The first part is the component version. For components that are are developed as part of Oracle Solaris, this will
represent the point in the release when this package last changed. For a component with its own development life
cycle, this sequence is the dotted release number, suchas‘2. 4. 10°.

The second part, which if present must follow a comma, is the build version. Oracle Solaris uses this to denote the
release of the OS for which the package was compiled.

The third part, which if present must follow a dash, is the branch version, providing vendor-specific information.
This can be incremented when the packaging metadata is changed, independently of the component; can contain a
build number; or provide some other information.

The fourth part, which if present must follow a colon, is a timestamp. It represents when the package was published
inthe GMT timezone, and is automatically updated when the package is published.

The package versions are ordered using | eft-to-right precedence; thus the timestamp is the least significant part of the
version space; the number immediately after the * @ is the most significant.

If required, pkg. human- ver si on can be used to hold a human-readable version string, however the versioning
scheme described above must aso be present. The human-readable version string is only used for display purposes,
and is documented later in this chapter.

By allowing arbitrary version lengths, |PS can accommodate a variety of different models for supporting software.
Within the confines of a given component version, a package author can use the build or branch versions and assign
one portion of the versioning scheme to security updates, another for paid vs. unpaid support updates, another for
minor bug fixes, etc.

A version can dso bethetoken ‘| at est ’, which is substituted for the |atest version known.

We discuss how Oracle Solarisimplements versioning in Chapter 13.

Publisher

A publisher is an entity that develops and constructs packages. A publisher name, or prefix, is used to identify this
source in a unique manner. The use of Internet domains or registered trademarks is encouraged, since it provides a
natural namespace partitioning.

Package clients combine all specified sources of packages for a given publisher when computing packaging
solutions. Publisher names can include upper and lower case letters, numbers, dashes and periods; the same
characters as avalid hostname.

11 Packaging and Delivering Software with the Image Packaging System

Action

Action

Actions are used to define the software that comprises a package; they define the data needed to create this software
component. When creating packages, the developer expresses the package contents as a set of actions then saves
those to a package manifest file.

Actions ook like this:

action_name attributel=valuel attri bute2=value2 ...
As a concrete example:

dir path=a/b/c group=sys node=0755 owner =r oot

The first field identifies this as a di r (or directory) action; the nanme=val ue attributes describe the familiar
properties of that directory. In the cases where the action has data associated with it, such as a file, the action looks
likethis:

file 11df c625cf4b266aaa9a77a73c23f 5525220a0ef pat h=etc/rel ease owner=root \
group=sys node=0444 chash=099953b6a315dc44f 33bca742619c636cdac3ed6 \
pkg. csi ze=139 pkg. si ze=189 vari ant . arch=i 386

Here the second attribute (without a name=prefix), called the payload, is the SHA-1 hash of thefile. This attribute
can aternatively appear as a regular attribute with the name hash; if both forms are present they must have the
same value.

Action metadata is freely extensible; additional attributes can be added to actions as desired. Attribute names cannot
include spaces, quotes, or equals signs (‘="). Attribute values can have all of those, although values with spaces must
be enclosed in single or double quotes. Single quotes need not be escaped inside of a double-quoted string, and vice
versa, though a quote can be prefixed with a backslash (‘\) so as not to terminate the quoted string. Backslashes can
be escaped with backslashes. It is recommended that custom attributes use a reverse domain name or similar unique
prefix to prevent accidental namespace overlap.

Multiple attributes with the same name can be present and are treated as unordered lists.

Note that manifests are largely created using programs; it is not expected that that developers produce complete
manifests by hand, but rather create skeletons with the minimal non-redundant information, and have the rest filled
in with tools such as pkgnogri fy(1) andpkgdepend(1).

Most actions have key attributes; this attribute is what makes this action unique from al others in the image. For file
system objects, thisis the path for that object.
Types of Actions

There are currently twelve action types in IPS. The following sections describe each action type, and the attributes
that define these actions. The action types are detailed in the pkg(5) man page, and are repeated here for
reference.

Each section contains an example action, as it would appear in a manifest during package creation. Other attributes
might be automatically added to the action during publication.

File Actions

Thefil e actionisby far the most common action, and represents an ‘ordinary file'. The file action references
apayload, and has four standard attributes:

12

Action

path
The file system path where the file isinstalled. Thisis afile action’s key attribute. These are relative to the
root of the image.
mode
The access permissions (in numeric form) of the file. These are simple permissions only, not ACLSs.
owner
The name of the user that ownsthefile.
group
The name of the group that owns thefile.
The payload is a positional attribute in that it is not named. It is the first word after the action name. In a
published manifest, it is the SHA-1 hash of the file contents. If present in a manifest that has yet to be
published, it represents the path where the payload can be found. See pkgsend(1) . The hash attribute can

be used instead of the positional attribute, should the value include an equals sign. Both can be used in the same
action. However, the hashes must be identical.

Other attributesinclude:
preserve
This specifies that the file's contents should not be overwritten on upgrade if the contents are determined to

have changed since the file was installed or last upgraded. On initial installs, if an existing file isfound, the
fileissalvaged (stored in/ var / pkg/ | ost +f ound).

« If the value of preserve isrenaneol d, then the existing file is renamed with the extension
. ol d, and the new fileis put in its place.

« If the value of preserve isrenanenew, then the existing file is left alone, and the new file is
installed with the extension . new.

« If the value of preserve isl egacy, then thisfileis not installed for initial package installs. On
upgrades, any existing file is renamed with the extension . | egacy, and then the new file is put in
its place.

« If the value of preserve istrue (or avalue not listed above, such as st r awber ry), then the
existing file is left alone, and the new file is not installed. Other values with specific meanings might
be added in future, sousing t r ue should be used if this functionality is required.

overlay

This specifies whether the action allows other packages to deliver afile at the same location or whether it
delivers a file intended to overlay another. This functionality is intended for use with configuration files
that do not participate in any self-assembly (for example, / et ¢/ ot d) and that can be safely overwritten.

«If over| ay isnot specified, multiple packages cannot deliver filesto the same location.

« If the value of overl ay is al | ow, one other package is allowed to deliver a file to the same
location. This value has no effect unlessthe pr eser ve attributeis also set.

« If the value of over| ay istr ue, thefile delivered by the action overwrites any other action that
has specified al | ow.

Changes to the installed file are preserved based on the value of the pr eser ve attribute of the
overlaying file. On removal, the contents of the file are preserved if the action being overlaid is still
installed, regardless of whether the pr eser ve attribute was specified. Only one action can overlay
another, and the rode, owner , and gr oup attributes must match.

original_name

13 Packaging and Delivering Software with the Image Packaging System

Directory Actions

This attribute is used to handle editable files moving from package to package or from place to place, or
both. The form this takes is the name of the originating package, followed by a colon and the original path
to the file. Any file being deleted is recorded either with its package and path, or with the value of the
ori gi nal _name attribute if specified. Any editable file being installed that hasthe or i gi nal _nane
attribute set uses the file of that name if it is deleted as part of the same packaging operation.

Note that once set, this attribute should never change even if the package or file are repeatedly renamed;
thiswill permit upgrade to occur from al previous versions.

revert-tag
This attribute is used to tag editable files that should be reverted as a set. Multipler evert-tag vaues
can be specified The file reverts to its manifest-defined state when pkg revert isinvoked with any of
those tags specified. See pkg(1) .
Specific types of file can have additional attributes. For ELF files, the following attributes are recognized:
elfarch
The architecture of the ELF file. This will is the output of uname - p on the architecture for which the

fileis built.
elfbits

Thisis32 or 64.
elfhash

This is the hash of the ‘interesting’ ELF sections in the file. These are the sections that are mapped into
memory when the binary is |loaded.

These are the only sections necessary to consider when determining whether the executable behavior of
two binaries will differ.

Anexamplefil e actionis:

file path=usr/bin/pkg owner=root group=bin node=0755

Directory Actions

Thedir actionislikethefil e actionin that it represents a file system object, except that it represents a
directory instead of an ordinary file. Thedi r action has the same four standard attributes asthef i | e action
(pat h, owner, gr oup and node), and pat h isthe key attribute.

Directories are reference counted in IPS. When the last package that either explicitly or implicitly references a
directory no longer does so, that directory is removed. If that directory contains unpackaged file system objects,
thoseitemsare moved into / var / pkg/ | ost +f ound.

To move unpackaged contents into a new directory, the following attribute might be useful:
salvage-from

This names a directory of salvaged items. A directory with such an attribute inherits on creation the
salvaged directory contents if they exist.

During installation, pkg(1) will check that al instances of a given directory action on the system have the
same owner, group and mode attributes, and will not install the action if conflicting actions will exist on the
system as aresult of the operation.

Anexampleof adi r actionis:

dir path=usr/share/lib owner=root group=sys node=0755

14

Link Actions

Link Actions

Thel i nk action represents asymbolic link. Thel i nk action has the following standard attributes:
path

Thefile system path where the symbolic link isinstalled. Thisisal i nk action's key attribute.
tar get

Thetarget of the symbolic link. The file system object to which the link resolves.

Thel i nk action also takes attributes that allow for multiple versions or implementations of a given piece of
software to be installed on the system at the same time. Such links are mediated, and allow administrators to
easily toggle which links point to which version or implementation as desired. These mediated links are
discussed in Chapter 10.

Anexampleof al i nk actionis:

link path=usr/lib/libpython2.6.so target=libpython2.6.s0.1.0

Hardlink Actions

Thehar dl i nk action represents a hard link. It has the same attributes as the link action, and pat h isalsoits
key attribute.

Anexampleof ahar dl i nk actionis:

hardl i nk pat h=opt/ nyappl i cation/ hardlink target=foo

Set Actions

Theset action represents a package-level attribute, or metadata, such as the package description.

The following attributes are recogni zed:
name
The name of the attribute.
value
The value given to the attribute.
The set action can deliver any metadata the package author chooses. However, there are a number of
well-defined attribute names that have specific meaning to the packaging system.
pkg.fmri
The name and version of the containing package.
info.classification

One or more tokens that a pkg(5) client can use to classify the package. The value should have a
scheme (such asor g. opensol ari s. cat egory. 2008 or org. acm cl ass. 1998) and the actua
classification, such as Appl i cat i ons/ Games, separated by a colon (‘: ’). The scheme is used by the
packagemanager (1) GUI. A setofi nfo.cl assification vauesisincludedin Appendix A.

pkg.summary

A brief synopsis of the description. Thisis output with pkg i st -s attheend of each line, aswell as
in one line of the output of pkg i nf 0, so it should be no longer than sixty characters. It should describe
what a package is, and should refrain from repeating the name or version of the package.

pkg.description

15 Packaging and Delivering Software with the Image Packaging System

Link Actions

A detailed description of the contents and functionality of the package, typically a paragraph or so in
length. It should describe why someone might want to install the package.

pkg.obsolete

When t r ue, the package is marked obsolete. An obsolete package can have no actions other than more
set actions, and must not be marked renamed. Package obsoletion is covered in Chapter 10

pkg.renamed

When t r ue, the package has been renamed. There must be one or more depend actions in the package
as well which point to the package versions to which this package has been renamed. A package cannot be
marked both renamed and obsolete, but otherwise can have any number of set actions. Package
renaming is covered in Chapter 10.

pkg.human-version

The version scheme used by IPS is strict, and does not alow for letters or words in the pkg. f nti
version field. If there is a commonly used human-readable version available for a given package, that can
be set here, and is displayed by IPStools. It does not get used as a basis for version comparison and cannot
be used in place of the pkg. f nTi version.

Some additional informational attributes, as well as some used by Oracle Solaris are described in Chapter 13.

Anexampleof aset actionis:

set nane=pkg. summary val ue="1nmge Packagi ng Systent

16

Driver Actions

Driver Actions

The driver action represents a device driver. The driver action does not reference a payload. The driver files
themselves must be installed as f i | e actions. The following attributes are recognized (see add_drv(1M
for more information):

name

The name of the driver. This is usualy, but not aways, the file name of the driver binary. This is the
driver action'skey attribute.

alias
This represents an alias for the driver. A given driver can have morethanoneal i as attribute. No specia
guoting rules are necessary.
class
Thisrepresents adriver class. A given driver can have morethan onecl ass attribute.
perms
This represents the file system permissions for the driver's device nodes.
clone_perms
This represents the file system permissions for the clone driver's minor nodes for this driver.
policy
This specifies additional security policy for the device. A given driver can have more than one pol i cy
attribute, but no minor device specification can be present in more than one attribute.

privs
This specifies privileges used by the driver. A given driver can have morethan onepri vs attribute.
devlink

This specifiesan entry in/ et ¢/ devl i nk. t ab. The value is the exact line to go into the file, with tabs
denoted by ‘\'t’. See devl i nks(1M for more information. A given driver can have more than one
devl i nk attribute.

An example of adriver actionis:

driver nane=vgatext \
al i as=pci cl ass, 000100 \
al i as=pci cl ass, 030000 \
al i as=pci cl ass, 030001 \
al i as=pnpPNP, 900 vari ant. arch=i 386 vari ant. opensol ari s. zone=gl oba

Depend Actions

The depend action represents an inter-package dependency. A package can depend on another package
because the first requires functionality in the second for the functionality in the first to work, or even to install.
Dependencies are covered in more detail in Chapter 6.

The following attributes are recognized:
fmri

The FMRI representing the target of the dependency. Thisis the dependency action’s key attribute. The
FMRI value must not include the publisher. The package name is assumed to be complete (that is,
rooted), even if it does not begin with aforward slash (‘/). Dependencies of typer equi r e- any can
have multiple f nri attributes. A version is optional on the f nti value, though for some types of

17 Packaging and Delivering Software with the Image Packaging System

License Actions

dependencies, an FMRI with no version has no meaning.

The FMRI value cannot use asterisks, and cannot usethe |l at est token for aversion.
type

The type of the dependency.

« If the value isr equi r e, then the target package is required and must have a version equal to or
greater than the version specified inthe f nri attribute. If the version is not specified, any version
satisfies the dependency. A package cannot be installed if any of its required dependencies cannot be
satisfied.

« If thevalueisopt i onal , then the target, if present, must be at the specified version level or greater.

« If the value is excl ude, then the containing package cannot be installed if the target is present at
the specified version level or greater. If no version is specified, the target package cannot be installed
concurrently with the package specifying the dependency.

« If thevalueisi ncor por at e, then the dependency is optional, but the version of the target package
is constrained. See Chapter 6 for adiscussion of constraints and freezing.

« If the value is r equi r e- any, then any one of multiple target packages as specified by multiple
fnri attributes can satisfy the dependency, following the same rules asthe r equi r e dependency
type.

« If the value is conditional, the target is required only if the package defined by the
pr edi cat e attribute is present on the system.

« If thevalueisori gi n, the target must, if present, be at the specified value or better on the image to
be modified prior to installation. If the value of ther oot - i mage attributeist r ue, the target must
be present on theimagerooted at */ ’ in order to install this package.

« If the value is gr oup, the target is required unless the package is on the image avoid list. Note that
obsolete packages silently satisfy the gr oup dependency. See the avoi d subcommand in the

pkg(1) man page.

« If the value is par ent , then the dependency is ignored if the image is not a child image, such as a
zone. If the image is a child image then the target is required to be present in the parent image. The
version matching for a parent dependency is the same as that used for i ncor porate
dependencies.

predicate

The FMRI representing the predicate for condi t i onal dependencies.
root-image

Has an effect only for or i gi n dependencies as mentioned above.

An example of adepend actionis:

depend fnri=crypto/ca-certificates type=require

License Actions

Thel i cense action represents a license or other informational file associated with the package contents. A
package can deliver licenses, disclaimers, or other guidance to the package installer through the use of the
license action.

The payload of the license action is delivered into the image metadata directory related to the package, and
should only contain human-readable text data. It should not contain HTML or any other form of markup.
Through attributes, license actions can indicate to clients that the related payload must be displayed and/or

18

Legacy Actions

reguire acceptance of it. The method of display and/or acceptance is at the discretion of clients.

The following attributes are recogni zed:

license
This attribute provides a meaningful description for the license to assist users in determining the contents
without reading the license text itself. Some example valuesinclude:

* ABC Co. Copyright Notice

» ABC Co. Custom License

» Common Development and Distribution License 1.0 (CDDL)
* GNU General Public License 2.0 (GPL)

* GNU General Public License 2.0 (GPL) Only

* MIT License

* MozillaPublic License 1.1 (MPL)

» Simplified BSD License
Wherever possible, including the version of the license in the description is recommended as shown above.
The license value must be unique within a package.

must-accept

When t r ue, this license must be accepted by a user before the related package can be installed or
updated. Omission of this attribute is equivalent to f al se. The method of acceptance (interactive or
configuration-based, for example) is at the discretion of clients.

must-display

When t r ue, the action's payload must be displayed by clients during packaging operations. Omission of
this value is considered equivalent to f al se. This attribute should not be used for copyright notices, only
actual licenses or other material that must be displayed during operations. The method of display is at the
discretion of clients.

Thel i cense attribute isthe key attribute for the license action.

Anexampleof al i cense actionis:

license |icense="Apache v2.0"

Legacy Actions

The | egacy action represents package data used by the legacy SVR4 packaging system. The attributes
associated with this action are added into the legacy system’'s databases so that the tools querying those
databases can operate as if the legacy package were actualy installed. In particular, this should be sufficient to
convince the legacy system that the package named by the pkg attribute is installed on the system, so that the
package can be used to satisfy SVR4 dependencies.

The following attributes, named in accordance with the parametersin pkgi nf o(4) , are recognized:
category
The value for the CATEGORY parameter. The default valueissyst em
desc
The value for the DESC parameter.
hotline

19 Packaging and Delivering Software with the Image Packaging System

Signature Actions

The value for the HOTLINE parameter.
name

The value for the NAME parameter. The default valueis‘none provi ded’.
pkg

The abbreviation for the package being installed. The default value is the name from the FMRI of the
package.

vendor

The value for the VENDOR parameter.
version

The value for the VERSION parameter. The default value is the version from the FMRI of the package.
Thepkg attribute isthe key attribute for the legacy action.

Anexampleof al egacy actionis:

| egacy pkg=SUNWesu arch=i 386 cat egory=system\
desc="core software for a specific instruction-set architecture" \
hotl i ne="Pl ease contact your |ocal service provider" \
nane="Core Solaris, (Usr)" vendor="Oracle Corporation" \
version=11. 11, REV=2009. 11. 11 vari ant. arch=i 386

Signature Actions

Signature actions are used as part of the support for package signing in IPS. They are covered in detail in
Chapter 11.

User Actions
The user action defines a UNIX user as defined in / et c/ passwd, / et ¢/ shadow, / et ¢/ gr oup, and

letc/ftpd/ftpusers files Usersdefined with this action have entries added to the appropriate files.

The following attributes are recognized:
username
The unique name of the user.

password

The encrypted password of the user. The default valueis‘* LK* .
uid

The unique numeric ID of the user. The default value is the first free value under 100.
group

The name of the user's primary group. Thismust befoundin/ et ¢/ gr oup.
gcosfield

The real name of the user, as represented in the GECOSfield in/ et ¢/ passwd. The default value is the
value of theuser nane attribute.

home-dir

The user's home directory. The default valueis*/ .
login-shell

The user's default shell. The default value is empty.

20

Group Actions

group-list
Secondary groups to which the user belongs. See gr oup(4) .
ftpuser

Canbesettotrue orfal se. Thedefault value of t r ue indicates that the user is permitted to login via
FTP. Seeft pusers(4).

lastchg

The number of days between January 1, 1970, and the date that the password was last modified. The
default value is empty.

min
The minimum number of days required between password changes. This field must be set to 0 or above to
enable password aging. The default value is empty.

max
The maximum number of days the password is valid. The default value is empty. See shadow(4) .

warn
The number of days before password expires that the user is warned.

inactive
The number of days of inactivity allowed for that user. This is counted on a per-machine basis. The
information about the last login is taken from the machine'slastlog file.

expire

An absolute date expressed as the number of days since the UNIX Epoch (January 1, 1970). When this
number is reached, the login can no longer be used. For example, an expi r e vaue of 13514 specifies a
login expiration of January 1, 2007.

flag
Set to empty.
For more information on the values of these attributes, seethe shadow(4) man page.

A example of auser actionis:

user gcos-field="pkg(5) server U D' group=pkg5srv uid=97 usernane=pkg5srv

Group Actions

The group action defines a UNIX group as defined in gr oup(4) . No support is present for group passwords.
Groups defined with this action initially have no user list. Users can be added with the user action. The
following attributes are recognized:

groupname
The value for the name of the group.
gid
The group's unique numeric id. The default value is the first free group under 100.

An example of agroup actioniis:

group groupnanme=pkg5srv gi d=97

21 Packaging and Delivering Software with the Image Packaging System

Repository

Repository

A software repository contains packages for one or more publishers. Repositories can be configured for access in a
variety of different ways: HTTP, HTTPS, file (on local storage or viaNFS or SMB) and as a self-contained package
archivefile, usually with the. p5p extension.

Package archives alow for convenient distribution of 1PS packages, and are discussed further in Chapter 4.

A repository accessed viaHTTP or HTTPS has a server process (pkg. depot d(1M) associated with it; in the case
of file repositories, the repository software runs as part of the accessing client.

Repositories are created with the pkgrepo(1l) command, and package archives are created with the
pkgrecv(1l) command.

22

Chapter 4

Chapter 4

Packaging Software with IPS
This chapter describes how to package your software with IPS.

Packaging software with IPS is usually straightforward due to amount of automation that is provided. Automation
avoids repetitive tedium since that seems to be the principle cause of most packaging bugs.

Publication in IPS consists of the following steps:
1. Generate a package manifest.

2. Add necessary metadata to the generated manifest.
3. Evaluate dependencies.

4. Add any facets or actuators that are needed.

5. Verify the package.

6. Publish the package.

7. Test the package.
Each step is covered in the following sections.

Generate a Package Manifest

The easiest way to get started is to organize the component files into the same directory structure that you want on
the installed system.

This can be done with i nstal | target in Makefiles, or if the software you want to package is already in atarball,
unpacking the tarball into a subdirectory. For many open source software packages that use aut oconf (1) , setting
the DESTDIR environment variable to point to the desired prototype area accomplishes this.

Suppose your software consists of a binary, a library and a man page, and you want to install this software in a
directory under / opt named nysof t war e. You should create a directory (named pr ot o in the examples) in
your build area under which your software appears, e.g:

prot o/ opt/ mysoftware/lib/nylib.so.1
pr ot o/ opt / nysof t war e/ bi n/ nycnd
pr ot o/ opt / nysof t war e/ man/ manl/ nycnd. 1

Now, let's generate a manifest for this proto area. We pipe it through pkgf mt (1) to format the manifest so that is
more readable. Assuming that the pr ot o directory isin the current working directory:

$ pkgsend generate proto | pkgfnt > mypkg.p5m 1

23 Packaging and Delivering Software with the Image Packaging System

Add Necessary Metadata to the Generated Manifest

Examining the file, you will see it contains the following lines:

di r pat h=opt group=bi n node=0755 owner =r oot

di r pat h=opt/nysoftware group=bi n nbode=0755 owner =r oot

di r pat h=opt/ mysof tware/ bi n group=bi n node=0755 owner =r oot
di r path=opt/nmysoftware/lib group=bin nbde=0755 owner =r oot
di r pat h=opt/ mysof tware/ man group=bi n node=0755 owner =r oot

di r pat h=opt/ nmysof t war e/ man/ manl group=bi n nbde=0755 owner =r oot

file opt/mysoftware/bin/nycnd pat h=opt/ nysoftware/bin/mycnmd group=bin \
nmode=0755 owner =r oot

file opt/mysoftware/lib/nylib.so.1 path=opt/nysoftware/lib/mylib.so.1\
group=bi n node=0644 owner =r oot

file opt/mysoftware/ man/ manl/ nycnd. 1 pat h=opt/ nmysof t war e/ man/ man1/ mycnd. 1 \
group=bi n node=0644 owner =r oot

The path of the filesto be packaged appears twice in the file action:

 Thefirst word after theword ‘f i | e’ describes the location of the file in the proto area.
» The path in the ‘pat h=" attribute specifies the location where the file is to be installed.

This double entry enables you to modify the installation location without modifying the prot o area This
capability can save significant time, for example if you repackage software that was designed for installation on a
different operating system.

Also, note that pkgsend gener at e has applied defaults for directory owners and groups. In the case of / opt ,
the defaults are not correct; well just delete that directory, since it's delivered by other packages aready on the
system and pkg(1) would not install the package if the attributes of / opt conflicted with those already on the
system.

Add Necessary Metadata to the Generated Manifest
A package should define the following metadata. See also "Set Actions' in Chapter 3.

* pkg. f nTi definesthe name and version of the package as described in "Package" in Chapter 3. A description
of Oracle Solaris versioning can be found in Chapter 13

* pkg. descri pti on isadescription of the contents of the package.
* pkg. sumrary isaone-line synopsis of the description.

evari ant. ar ch enumerates the architectures for which this package is suitable. If the entire package can be
installed on any architecture, this can be omitted. Producing packages that have different components for
different architecturesis discussed in Chapter 7.

einfo.classification is a grouping scheme used by packagemanager (1), the IPS GUI. The
supported values are shown in Appendix A. In this case, we pick an arbitrary one for our sample package.

In addition, we will add a link action to / usr/ shar e/ man/i ndex. d pointing to our man directory, and
discuss this link when covering facets and actuators later in this chapter.

Rather than modifying the generated manifest directly, well use pkgnogri fy(1) to edit the generated manifest.
A full description of how pkgmnogri fy(1) can be used to modify package manifests can be found in Chapter 8.

In this example the macro capability is used to define the architecture, as well as regular expression matching for the
directory to elide from the manifest.

24

Evaluate Dependencies

Now we create a small file containing the information we want to add to the manifest, as well as the transform
needed to drop the opt directory from the manifest:

set nane=pkg.fnri val ue=nypkga@.O0,5.11-0
set nane=pkg. summary val ue="This is our exanpl e package"
set nane=pkg. description value="This is a full description of \
all the interesting attributes of this exanpl e package."
set nane=vari ant. arch val ue=$(ARCH)
set nane=i nfo.classification \
val ue=or g. opensol ari s. cat egory. 2008: Appl i cati ons/ Accessori es
i nk pat h=usr/share/ man/ i ndex. d/ mnysof t ware t arget =opt/ nysoftwar e/ man
<transform dir pat h=opt $->dr op>

Running pkgnogri fy(1) overnypkg. p5m 1 with the above linesin afile named mypkg.mog:
$ pkgnogrify -DARCH="unanme -p° nypkg.p5m 1 nypkg.nmog | pkgfm > nypkg. pom 2

Examining the file we see:

set name=pkg. fnri val ue=nypkg@.O0,5.11-0
set nanme=pkg. description \
value="This is a full description of all the interesting attributes of this exanple package.
set name=pkg. summary val ue="This is our exanple package"
set nane=i nfo.classification \
val ue=or g. opensol ari s. cat egory. 2008: Appl i cati ons/ Accessori es
set nanme=vari ant.arch val ue=i 386
l'i nk pat h=usr/shar e/ man/i ndex. d/ mysof t war e tar get =opt/ nysoftware/ man
di r pat h=opt/ nysoftware group=bi n node=0755 owner =r oot
dir path=opt/ nmysof t war e/ bi n group=bi n node=0755 owner =r oot
dir path=opt/nysoftware/lib group=bi n node=0755 owner =r oot
dir pat h=opt/ nysof t ware/ man group=bi n node=0755 owner =r oot
di r pat h=opt/ nysof t war e/ man/ manl group=bi n node=0755 owner =r oot
file opt/nmysoftware/bin/nycnd pat h=opt/ nmysoftware/bin/nycnd group=bin \
nmode=0755 owner =r oot
le opt/nysoftware/lib/nylib.so.1 path=opt/nysoftware/lib/nylib.so.1\
group=bi n node=0644 owner =r oot
| e opt/nysoftware/ man/ manl/ mycnd. 1 pat h=opt/ nysof t war e/ man/ manl/ nycnd. 1 \
group=bi n node=0644 owner =r oot
I'i nk pat h=usr/share/ man/i ndex. d/ mysoftware target=../../../../opt/nysoftware/ man

f

f

Note that the directory action defining opt has been removed, and the manifest contents from mypkg. nog have
been added to our package.

Evaluate Dependencies

Usethe pkgdepend(1) command to automatically generate dependencies for the package. The generated depend
actions are defined in Chapter 3 and discussed further in Chapter 6.

Dependency generation is composed of two separate steps:

1. Determine the files on which our software depends.

2. Determine the packages that contain those files.

These steps are referred to as dependency generation and dependency resolution and are performed using the
generate andresol ve subcommands of pkgdepend(1), respectively.

25 Packaging and Delivering Software with the Image Packaging System

Evaluate Dependencies

First, we'll generate our dependencies:
$ pkgdepend generate -md proto nypkg. p5m 2 | pkgfnt > mypkg. p5m 3

The - m option causes pkgdepend(1) to include the entire manifest in its output, and the - d option passes the
pr ot o directory to the command.

In this new file, we see:

set nane=pkg.fnri val ue=nypkg@.O0, 5.11-0
set nane=pkg. description \
value="This is a full description of all the interesting attributes of this exanple package."
set nane=pkg. summary val ue="This is our exanple package"
set nane=info.classification \
val ue=or g. opensol ari s. cat egory. 2008: Appl i cat i ons/ Accessori es
set nanme=vari ant.arch val ue=i 386
di r pat h=opt/ nysof t ware group=bi n node=0755 owner =r oot
dir pat h=opt/ nysoftware/bin group=bi n nrode=0755 owner =r oot
dir pat h=opt/nysoftware/lib group=bin nbde=0755 owner =r oot
dir pat h=opt/ nysoftware/ man group=bi n node=0755 owner =r oot
di r pat h=opt/ nysof t war e/ man/ manl group=bi n node=0755 owner =r oot
file opt/nysoftware/bin/mycnd pat h=opt/ mysoftware/bin/mycnd group=bin \
mode=0755 owner =r oot
file opt/nmysoftware/lib/nylib.so.1 path=opt/nysoftware/lib/nylib.so.1\
gr oup=bi n nbde=0644 owner =r oot
file opt/nysoftware/ man/ manl/ nycnd. 1 pat h=opt/ nysof t war e/ man/ man1/ mycnd. 1 \
gr oup=bi n node=0644 owner =r oot
|'i nk pat h=usr/share/ man/i ndex. d/ nysoftware target=../../../../opt/nysoftware/mn
depend fnri=__TBD pkg. debug. depend. file=libc.so.1 \
pkg. debug. depend. r eason=opt / nysof t war e/ bi n/ nycnd \
pkg. debug. depend. t ype=el f type=require pkg.debug. depend. path=lib \
pkg. debug. depend. pat h=opt/ nysof tware/l i b pkg. debug. depend. pat h=usr/lib
depend fnri=__TBD pkg. debug. depend. file=libc.so.1 \
pkg. debug. depend. r eason=opt / nysof tware/li b/ mylib.so.1 \
pkg. debug. depend. t ype=el f type=require pkg.debug. depend. path=lib \
pkg. debug. depend. pat h=usr/1i b

pkgdepend(1) has added notations about a dependency on | i bc. so. 1 by both nmyl i b. so. 1 and mycnd.
Note that the internal dependency between mycnd and nylib.so.1 is currently slently elided by
pkgdepend(1).

Now we need to resolve these dependencies. To resolve dependencies, pkgdepend(1) examines the packages
currently installed on the machine used for building the software. By default, pkgdepend(1) puts its output in
mypkg. p5m 3. r es. Note that this takes awhile to run as it loads lots of information about the system on which it
is running. pkgdepend(1) will resolve many packages at once if you want to amortize this time over all
packages; running it on one package at atime is not time efficient.

$ pkgdepend resol ve -m nmypkg. p5m 3

26

Add Any Facets or Actuators That Are Needed

When this completes, mypkg. p5m 3. res contains.

set nane=pkg.fnri val ue=nypkg@.O0,5.11-0
set nanme=pkg. description \
value="This is a full description of all the interesting attributes of this exanple package."
set nane=pkg. sunmary val ue="This is our exanpl e package"
set nane=i nfo.classification \
val ue=or g. opensol ari s. cat egory. 2008: Appl i cati ons/ Accessori es
set nane=vari ant.arch val ue=i 386
dir pat h=opt/ nysoftware group=bin nbde=0755 owner =r oot
di r pat h=opt/ nysof t ware/ bi n group=bi n node=0755 owner =r oot
dir pat h=opt/nysoftware/lib group=bi n node=0755 owner =r oot
di r pat h=opt/ nysof t war e/ man group=bi n node=0755 owner =r oot
di r pat h=opt/ nysoftwar e/ man/ manl gr oup=bi n nbde=0755 owner =r oot
file opt/nysoftware/bin/mycmd pat h=opt/nysoftware/bin/ mycnmd group=bin \
mode=0755 owner =r oot
file opt/nysoftware/lib/nylib.so.1 path=opt/nysoftware/lib/nylib.so.1\
gr oup=bi n nbde=0644 owner =r oot
file opt/nysoftware/ man/ manl/ mycnd. 1 pat h=opt/ mysof t war e/ man/ manl/ mycnd. 1 \
gr oup=bi n nbde=0644 owner =r oot
I'i nk pat h=usr/shar e/ man/ i ndex. d/ nysof t ware t ar get =opt/ nysof t war e/ man
depend fnri=pkg:/systenmllibrary@.5.11,5.11-0.175.0.0.0.2.1 type=require

pkgdepend(1) has converted the notation about the file dependency on | i bc. so. 1 to a package dependency
onpkg: /system |i brary whichdeliversthat file.

We recommended that developers use pkgdepend(1) to generate dependencies, rather than declaring depend
actions manually. Manual dependencies can become incorrect or unnecessary as the package contents might change
over time. This could happen, for example, when a file that an application depends on gets moved to a different
package. Any manually declared dependencies on that package would then be out of date.

Some manually declared dependencies might be necessary if pkgdepend(1) isunable to determine dependencies
completely, in which case we recommend that comments are added to the manifest to explain the nature of each
dependency.

Add Any Facets or Actuators That Are Needed

Facets and actuators are discussed in more detail in Chapter 7 and Chapter 9. Facets alow us to denote actions that
are not required but can be optionally installed. Actuators specify system changes that must occur when an action in
our packageisinstalled, updated, or removed.

Since we are delivering a man page in opt / nysof t war e/ man/ manl we would like to add a facet to indicate
that documentation is optional.

We would also like an SMF service, svc: / appl i cation/ man-i ndex: def aul t, to be restarted when our
packageisinstalled, so that our man page isincluded in the index. The 'restart_fmri' actuator can perform that task.

The man- i ndex service looks in /usr/ share/ man/i ndex. d for symbolic links to directories containing
man pages, adding the target of each link to the list of directories it scans, hence our earlier addition of that link to
our man pages. This is a good example of the self-assembly idiom that was discussed in Chapter 1, and is used
throughout the packaging of the OS itself.

Oracle Solaris ships with aset of pkgrogri fy(1) transformsthat were used to package the the operating system,
in/ usr/ shar e/ pkg/ t r ansf or ns. These transforms are discussed in more detail in Chapter 8.

Thefilecaled docunent at i on contains the transforms that are closest to what we need here, though since we're
delivering our man pageto/ opt , welll usethedocunent at i on transformsfile as a guide, and use the following
transforms instead. These transforms include a regular expression opt /. +/ man(/ . +) ? which match all paths
beneath opt that contain anman subdirectory:

27 Packaging and Delivering Software with the Image Packaging System

Verify the Package

<transformdir file |ink hardlink path=opt/.+/man(/.+)? ->\
default facet.doc.man true>

<transformfile path=opt/.+/ man(/.+)? ->\
add restart_fnri svc:/application/ man-index: defaul t>

We can run our manifest through this transform using:
$ pkgnogrify nypkg. p5bm 3.res /tnp/doc-transform | pkgfnt > nmypkg. p5m4.res
which changes the three man-page-related actionsin our manifest, from:

di r pat h=opt/ nmysof tware/ man group=bi n node=0755 owner =r oot

di r pat h=opt/ nmysof t war e/ man/ manl group=bi n nbode=0755 owner =r oot

file opt/mysoftware/ man/ manl/ nycnd. 1 pat h=opt/ nmysof t war e/ man/ man1/ mycnd. 1 \
group=bi n node=0644 owner =r oot

to:

dir pat h=opt/ nmysoftware/ man owner=r oot group=bi n nbde=0755 facet. doc. man=true
dir pat h=opt/ nmysoftware/ man/ manl owner =root group=bi n node=0755 \
facet. doc. man=true
file opt/nysoftware/ man/ manl/ mycnd. 1 pat h=opt/ nmysof t war e/ man/ manl/ nycnd. 1 \
owner =r oot group=bi n nbde=0644 \
restart_fmri=svc:/application/ man-i ndex: default facet.doc. man=true

For efficiency, we could have included this transform when originally adding metadata to our package, before
running pkgdepend(1) .
Verify the Package

The last thing we need to do before publication is run pkgl i nt (1) on our manifest. This helps us determine
whether we've made any errors while writing the manifest that we'd like to catch before publication. Some of the
errors that pkgl i nt (1) can catch are ones also caught either at publication time, or when a user tries to install a
package, but obvioudly, we'd like to catch errors as early as possible in the package authoring process.

For example, pkgl i nt (1) checks that the package doesn't deliver files already owned by another package, and
that all metadata for shared, reference-counted actions (such as directories) is consistent across packages.

There are two modesin which to run pkgl i nt (1) :

* Directly on the manifest itself
* On the manifest, also referencing a repository

For developers who want to quickly check the validity of their manifests, using the first form is usually sufficient.
The second form is recommended to be run at least once before publication to arepository.

By referencing arepository, pkgl i nt (1) can perform additional checks to ensure that the package interacts well
with other packages in that repository.

Thefull list of checksthat pkgl i nt (1) performscan be shownwith pkgl i nt - L. Detailed information on how
to enable, disable and bypass particular checks is given in the pkgl i nt (1) man page. It aso details how to
extend pkgl i nt (1) to run additional checks.

28

Publish the Package

In the case of our test package, we see:

$ pkglint nypkg. pSm4.res

Li nt engi ne setup...

Starting lint run...

WARNI NG opensol ari s. mani fest001.1 M ssing attribute
‘org.opensol ari s. consol i dation' in pkg:/mypkg@.O,5.11-0

WARNI NG pkgl i nt.action005. 1 obsol et e dependency check ski pped: unabl e
to find dependency pkg:/systenllibrary@.5.11-0.168 for
pkg: / nmypkg@. 0, 5.11-0

These warnings are acceptable for our purposes:

e opensol ari s. mani fest 001. 1 iswarning us that we haven't declared a tag that is generally only
required for bundled Oracle Solaris software, so we can ignore this warning.

e pkglint.action005.1 is warning us that pkglint (1) wasn't able to find a package called
pkg:/systenilibrary@.5.11-0. 168 which we have generated a dependency on. Since
pkglint (1) wascaled with just the manifest file as an argument, it does not know which repository
that package is present in, hence the warning.

When pkglint (1) isrunwitha-r flag referencing arepository containing the package that our test package
has a dependency on, we see:

$ pkglint -c ./solaris-reference -r http://pkg.oracle.conifsolarisll/release nypkg.p5m4.res
Li nt engi ne setup...

PHASE | TEMS
4 4292/ 4292
Starting lint run...

WARNI NG opensol aris. mani fest001. 1 M ssing attribute 'org.opensol aris.consolidation" in pkg:/nypkg@.O0,5.11-0
$

Publish the Package

Now that our package is created, dependencies are added, and it has been checked for correctness, we can publish the
package.

IPS provides three different ways to deliver a package:

* Publish to alocal file-based repository
* Publish to aremote HT TP-based repository
» Converttoa. p5p package archive
Generally, publishing to afile-based repository is sufficient while testing a package.

If the package needs to be transferred to other machines which cannot access the package repositories, converting
one or more packages to a package archive can be convenient.

The package can also be published directly to an HTTP repository, hosted on a machine with a read/write instance of
svc:/application/pkg/server (whichinturnrunspkg. depotd(1M).

We do not generally recommend this method of publication since there are no authorization/authentication checks on
the incoming package when publishing over HTTP. Publishing to HTTP repositories can be convenient on secure
networks or when testing the same package across several machines if NFS or SMB access to the file repository is
not possible.

29 Packaging and Delivering Software with the Image Packaging System

Local File Repositories

Installing packages over HTTP (or preferably HTTPS) is fine, however.

Local File Repositories

pkgrepo(1l) can be used to create and manage repositories. We choose a location on our system, create a
repository, then set the default publisher for that repository:

$ pkgrepo create /scratch/ my-repository

$ pkgrepo -s /scratch/nmy-repository set publisher/prefix=nypublisher
$ find /scratch/ nmy-repository/

[scratch/ my-repository/

[scratch/ my-repository/ pkg5. repository

We can now use pkgsend to publish our package, and pkgr epo to examine the repository afterwards:

$ pkgsend -s /scratch/ my-repository/ publish -d proto mypkg. pSm4.res
pkg: / / nypubl i sher/ mypkg@. 0, 5. 11-0: 20111012T034303Z

PUBLI SHED

$ pkgrepo -s /scratch/ nmy-repository info

PUBLI SHER PACKAGES STATUS UPDATED

nypubl i sher 1 online 2011- 10- 12T03: 43: 04. 117536Z

Thefile repository can then be served over HTTP or HTTPS using pkg. depot d(1M if required.

Package Archives

Package archives enable you to distribute groups of packagesin a single file. We can use pkgr ecv(1) to create
package archives from package repositories, and vice versa.

Package archives can be easily downloaded from an existing website, copied to a USB key or burned to a DVD for
installation in cases where a package repository is not available.

In the case of our simple file repository above, we can create an archive from this repository with the following
command:

$ pkgrecv -s /scratch/my-repository -a -d myarchive. p5p nypkg
Retrievi ng packages for publisher nypublisher
Retrieving and eval uating 1 package(s)...

DONNL CAD PKGS FI LES XFER (MB)
Conpl et ed 1/1 3/3 0.7/0.7
ARCHI VE FILES STORE (MB)
myar chi ve. p5p 14/ 14 0.7/0.7

We can list the newest available packages from a repository using pkgrepo:
$ pkgrepo -s /scratch/mnmy-repository list '*@atest’
PUBLI SHER NAMVE O VERSI ON
nypubl i sher nypkg 1.0,5.11-0: 20111012T0332072

This output can be useful when constructing scripts to create archives with the latest versions of all packages from a
given repository.

30

Test the Package

Temporary repositories or package archives provided with the - g flag for pkg install and other package
operations cannot be used on systems with child or parent images (non-global zones have a child/parent relationship
with the global zone) since the system repository does not get temporarily configured with that publisher
information.

Package archives can be set as sources of local publishersin non-global zones, however.

Test the Package
Having published our package, we are interested in seeing whether it has been packaged properly.

In this example, we ensure that our user has the Software Installation Profile, in order to be able to install packages
without root privileges, then we add the publisher in our repository to the system:

$ sudo su
Passwor d:
usernod -P 'Software Installation” myuser
Found user in files repository.
UX: usernpd: nyuser is currently | ogged in, sone changes may not take effect
until next | ogin.
"D
$ pfexec pkg set-publisher -p /scratch/ my-repository
pkg set-publi sher:
Added publisher(s): mypublisher

You can use pkg install -nvto see what the install command will do without making any changes. The
following example actually installs the package:

$ pfexec pkg install mypkg

Packages to install: 1
Create boot environnent: No
Creat e backup boot environnent: No
DONNL QAD PKGS FI LES XFER (MB)
Conpl et ed 1/1 3/3 0.7/0.7
PHASE ACTI ONS
Install Phase 15/ 15
PHASE | TEMS
Package State Update Phase 1/1
| mage State Update Phase 2/ 2
PHASE | TEMS
Readi ng Exi sting | ndex 8/ 8
| ndexi ng Packages 1/1

31 Packaging and Delivering Software with the Image Packaging System

Test the Package

We can then examine the software as it was delivered on the system:

$ find /opt/nysoftware/

[opt / nysof twar e/

[opt / nysoftware/ bin

[opt / nysoftware/ bin/mocnd
[opt/nysoftware/lib
[opt/nysoftware/lib/nylib.so.1

[opt / nysof t war e/ man

[opt / nysof t war e/ man/ man- i ndex

[opt / nysof t war e/ man/ man- i ndex/t erm doc
[opt / nysof t war e/ man/ man- i ndex/ . i ndex- cache
[opt / nysof t war e/ man/ man-i ndex/termdi c
[opt / nysof twar e/ man/ man-i ndex/termreq
[opt / nysof t war e/ man/ man- i ndex/t er m pos
[opt / nysof t war e/ man/ manl

[opt / nysof t war e/ man/ manl/ mycnd. 1

In addition to the binaries and man page showing up, we can see that the system has also generated the man page
indexes as aresult of our actuator restarting the man- i ndex service.

We can seethat pkg i nf o shows the metadata that we added to our package:

$ pkg info nypk
Nane: nypkg
Summary: This is our exanple package
Description: This is a full description of all the interesting attributes of
thi s exanpl e package.
Cat egory: Applications/Accessories
State: Installed
Publ i sher: nypubli sher
Version: 1.0
Bui | d Rel ease: 5.11
Branch: O
Packagi ng Date: Cctober 12, 2011 03:43: 03 AM
Size: 1.75 MB
FMRI @ pkg: // nypublisher/ mypkg@l. 0, 5. 11-0: 20111012T034303Z

We can also seethat pkg sear ch returns hits when querying for filesin our package:

$ pkg search -1 mycnd. 1
| NDEX ACTI ON VALUE PACKAGE
basenane file opt / nysof t war e/ man/ manl/ mycnmd. 1 pkg:/ nypkg@l. 0-0

32

Chapter 5

Chapter 5

Installing, Removing, and Updating Software Packages

This chapter describes how the IPS client works internally when installing, updating and removing the software
installed in an image.

Understanding basically how pkg(1) workswill help administrators and developers better understand the various
errors that can occur, and alow them to more quickly resolve package dependency problems.

How package changes are performed

The following steps are executed when pkg(1) isinvoked to modify the software installed on the machine:

 Check input for errors
 Determine the system end-state
* Run basic checks

* Run the solver

* Optimize the solver results

* Evaluate actions

» Download content

 Execute actions

* Process actuators

When operating on the global zone, during execution of the steps above, pkg(1) can execute operations on any
non-global zones on the machine, for example to ensure that dependencies are correct between the global and
non-global zones, or to download content or execute actions for non-global zones. Chapter 12 has more detail about
Zones.

In the following sections, we'll describe each of these steps.
Check Input for Errors
We perform basic error checking on the options presented on the command line.

Determine the System End State

A description of the desired end state of the system is constructed. In the case of updating all packages in the
image this might be something like "all the packages currently installed, or newer versions of them". In the case
of package removal, it would be "all the packages currently installed without this one".

IPS tries hard to determine what the user intends this end state to look like. In some cases, |PS might determine
an end state that is not what the user intended, even though that end state does match what the user requested.

When troubleshooting, it is best to be as specific as possible. The following command is not specific:

pkg update

If this command fails with a message such as No updates avail able for this inmage, thenyou
might want to try a more specific command such as the following command:

33 Packaging and Delivering Software with the Image Packaging System

Run Basic Checks

pkg update "*@atest™

This command defines the end state more exactly, and can produce more directed error messages.
Run Basic Checks

The desired end state of the system is reviewed to make sure that a solution appears possible. During this basic
review, pkg(1) checksthat a plausible version exists of all dependencies, and that desired packages do not
exclude each other.

If an obvious error exists, then pkg('1) will print an appropriate error message and exit.

Run the Solver

The solver forms the core of the computation engine used by pkg(5) to determine the packages that can be
installed, updated or removed, given the constraints in the image and constraints introduced by any new
packages for installation.

This problem is an example of a Boolean satisfiability problem, and can be solved by a SAT solver.

The various possible choices for al the packages are assigned boolean variables, and all the dependencies
between those packages, any required packages, etc. are cast as boolean expressions in conjunctive normal
form.

The set of expressions generated is passed to MiniSAT. If MiniSAT cannot find any solution, the error handling
code attempts to walk the set of installed packages and the attempted operation, and print the reasons that each
possible choice was eliminated.

If the currently installed set of packages meet the requirements but no other does, pkg(1) will report that
there is nothing to do.

As mentioned in a previous section, the error message generation and specificity is determined by the inputs to
pkg(1) . Being as specific as possible in commands issued to pkg(1) will produce the most useful error
messages.

If on the other hand MiniSAT finds a possible solution, we begin optimization.
Optimize the Solver Results

The optimization phase is necessary because there is no way of describing some solutions as more desirable
than othersto a SAT solver.

Instead, once a solution is found, IPS adds constraints to the problem to separate less desirable choices, and to
separate the current solution as well. We then repeatedly invoke MiniSAT and repeat the above operation until
no more solutions are found. The last successful solution is taken as the best one.

Clearly, the difficulty of finding a solution is proportional to the number of possible solutions. Being more
specific about the desired result will produce solutions more quickly.

Evaluate Actions

Once the set of package FMRIs that best satisfy the posed problem is found, the evaluation phase begins.

In this phase, we compare the packages currently installed on the system with the end state, and compare
package manifests of old and new packages to determine three lists:

* Actionsthat are being removed

34

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://minisat.se

Download Content

* Actionsthat are being added
* Actionsthat are being updated
The action lists are then updated so that:

« directory and link actions are reference counted, mediated link processing is done

« hardlinks are marked for repair if their target file is updated. This is done because updating a target of a
hardlink in a manner that is safe for currently executing processes breaks the hard links.

« editable files moving between packages are correctly handled so that any user edits are not lost.
« the action lists are sorted so that removals, additions and updates occur in the correct order.

All the currently installed packages are then cross-checked to make sure that no packages conflict. That is,
ensuring that two packages do not attempt to deliver a file to the same location, ensuring that directory
attributes for the same directory agree between packages, etc.

If conflicts exist, these are reported and pkg(1) exits with an error message.

Finaly, the action lists are scanned to determine if any SMF services need to be restarted if this operation is
performed, whether or not this change can be applied to a running system, whether the boot archive needs to be
rebuilt and whether the amount of space required is available, etc.

Download Content

If pkg(1) isrunning withoutthe- n flag, processing continues to the download phase.

For each action that requires content, we download any required files by hash and cache them. This step can
take some time if the amount of content to be retrieved islarge.

Once downloading is complete, if the change is to be applied to a live system (image is rooted at /) and a
reboot is required, the running system is cloned and the target image is switched to the clone.

Execute Actions
Executing actions involves actually performing the install or remove methods specific to each action type on the
image.

Execution begins with all the removal actions being executed. If any unexpected content is found in directories
being removed from the system, that content isplaced in/ var / pkg/ | ost +f ound.

Execution then proceeds to install and update actions. Note that al the actions have been blended across all
packages. Thus al the changes in a single package operation are applied to the system at once rather than
package by package. This permits packages to depend on each other, exchange content, etc. safely. For details
on how files are updated, see the description of thef i | e action in Chapter 3.

Process Actuators
If we're updating a live system, any pending actuators are executed at this point. These are typically SMF

service restarts and refreshes. Once these are launched, we update the local search indicies. We discuss
actuators in more detail in Chapter 9

Lastly, if needed, we update the boot archive.

35 Packaging and Delivering Software with the Image Packaging System

Chapter 6

Chapter 6

Specifying Dependencies
Dependencies define how packages are related.

IPS provide a variety of different dependency types as discussed in Chapter 3. In this chapter we go into more detail
about how each dependency type can be used to control the software that is installed.

In IPS, a package cannot be installed unless all package dependencies are satisfied. IPS alows packages to be
mutually dependent (to have circular dependencies). IPS aso alows packages to have different kinds of
dependencies on the same package at the same time.

Dependency Types

Each section below contains an example depend action, asit would appear in a manifest during package creation.

require
The most basic type of dependency isther equi r e dependency.

If a package A@1.0 contains arequi re dependency on package B@2, it means that if A@1.0 is installed, a
version of B at 2 or higher must be installed as well.

This acceptance of higher versioned packages reflects the implicit expectation of binary compatibility in newer
versions of existing packages.

These dependencies are typically used to express functional dependencies such as libraries or interpreters such as
Python, Perl, etc. The version portion of the specified FMRI can be omitted; it indicates that any version will suffice.
The latter might not be actually true, but if other dependencies constrain the version adequately, this might save
some effort.

Anexampler equi r e dependency is:

depend fnri=pkg:/system library type=require

require-any

Therequi re-any dependency is used if more than one package will satisfy a functiona requirement. 1PS will
pick one of the packagesto install if the dependency is not aready satisfied.

A typica use might be to ensure that at least one version of Perl was installed on the system, for example. The
versioning is handled in the same manner asfor ther equi r e dependency.

Anexampler equi r e- any dependency is:
depend type=require-any fnri=pkg:/editor/gnu-enacs/gnu-enmacs-gtk \

fnri =pkg: / edi t or/ gnu- emacs/ gnu- enacs- no- x11 \
fnri =pkg: / edi t or/ gnu- emacs/ gnu- enacs- x11

opti onal

The opti onal dependency is similar to the r equi re dependency, but the specified package need not be
installed. However, if it is present, it must be at the specified version or greater.

Thistype of dependency istypically used to handle cases where packages transfer content.

36

mailto:A@1.0
mailto:A@1.0

conditional

In this case, each version of the package post-transfer would contain an optional dependency on the other package's
post-transfer version, so it would be impossible to install incompatible versions of the two packages.

Omitting the version on an optional dependency makes the dependency a no-op, but is permitted.

Anexampleopt i onal dependency is:

depend fnri=pkg:/x11/server/xorg@.9.99 type=optional

condi ti onal

Thecondi ti onal dependency issimilar to ther equi r e dependency as well, except that a predicate attribute
is present. If the package specified in the value of the predicate attribute is present on the system at the specified or
greater version, the conditional dependency istreated asar equi r e dependency, otherwiseit isignored.

This type of dependency is most often used to install optional extensions to a package if the requisite base packages
are present on the system.

For example, an editor package that has both X11 and termina versions might place the X11 version in a separate
package, and include a conditional dependency on the X11 version from the text version with the existence of the
requisite X client library package as the predicate.

An example conditional dependency is:

depend type=conditional fnri=library/python-2/pycurl-26 \
pr edi cat e=runti nme/ pyt hon- 26

group
Thegr oup dependency is used to construct groups of packages.

The group dependency will ignore the version specified; any version of the named package satisfies this dependency.
The named package is required unless the package has been placed on the avoid list (see pkg(1)), the package is
rejected withpkg i nstal |l --reject, orthe packageisuninstalled with pkg uni nstal | .

These three options enable administrators to ‘deselect’ packages that are the subject of a group dependency. IPS will
remember this and not re-install the package during an update unless it becomes required by another dependency. If
the new dependency is removed by another subsequent operation, then the package is uninstalled again.

A good example of how to use these dependencies is to construct packages containing group dependencies on

packages that are needed for typical uses of a system. Some examples might be sol ari s-smal | - server,

sol ari s-deskt op or devel oper-gnu. A set of Oracle Solaris packages delivering group dependencies is
shown in Chapter 13.

The administrator could install al that apply and know that over subsegquent updates to newer versions of the OS, the
appropriate packages would be added to his system.

Anexamplegr oup dependency is:.

depend fnri =package/ pkg type=group

origin
Theori gi n dependency existsto resolve upgrade issues that require intermediate transitions. The default behavior
isto specify the minimum version of a package (if installed) that must be present on the system being updated.

For example, a typical use might be a database package version 5 that supports upgrade from version 3 or greater,
but not earlier versions.

37 Packaging and Delivering Software with the Image Packaging System

parent

In this case, version 5 would have an origin dependency on itself at version 3. Thus, if version 5 was being fresh
installed, installation would proceed; but if version 1 of the package was installed, one could not upgrade directly to
thisversion.

Thus, pkg updat e dat abase- package would not select version 5 in this case but would pick version 3
instead as the latest possible version it could upgrade to.

The behavior of this dependency can be modified by ther oot - i nage attribute being set to t r ue; in this case the
named package must be at the specified version or greater if it is present in the running system, rather than the image
being updated.

Thisis generally used for operating system issues such as dependencies on boot block installers.

Anexampleori gi n dependency is.

depend fnri=pkg:/database/ mydb@. 0 type=origin

par ent

The par ent dependency is used for zones or other child images. In this case, the dependency is only checked in
the child image, and specifies a package and version that must be present in the parent image or globa zone. The
version specified must match to the level of precision specified.

For example, if the par ent dependency ison A@2.1, then any version of A beginning with 2.1. will match. This
dependency is often used to require that packages are kept in sync between non-global zones and the global zone,
and as a short cut a special package name f eat ur e/ package/ dependency/ sel f isused as a synonym for
the exact version of the package that contains this dependency.

This is used to keep key operating system components, such as | i bc. so. 1 instaled in the zone synchronized
with the kernel installed in the global zone. The par ent dependency is also discussed in Chapter 12.

An example par ent dependency is:

depend type=parent fnri=feature/package/ dependency/self \
vari ant. opensol ari s. zone=nongl obal

i ncorporate

The i ncor por at e dependency is heavily used in Oracle Solaris to ensure that compeatible versions of software
areinstalled together.

The basic mechanism is like that of an opti onal dependency, except that the version matching is that of the
par ent dependency: if this packageis present, it must be at the specified version to the level specified.

How these dependencies are typically used is that many of them are placed in the same package to define a surface in
the package version space that is compatible. Packages that contain such sets of incorporate dependencies are often
called incorporations; it is typical to define such for sets of software packages that are built together and are not
separately versioned, like much of the kernel.

Anexamplei ncor por at e dependency is.

depend type=i ncorporate \
fnri=pkg:/driver/network/ethernet/el000g@. 5. 11,5.11-0.175.0.0.0.2.1

38

mailto:A@2.1

exclude

excl ude

The excl ude dependency is seldom used. It alows the containing package to preclude installation with the
specified package at the specified version or higher.

Note that if the version is omitted, no version of the specified package can be installed with the containing package.
These constraints can be frustrating to administrators, and should be avoided where possible.

An exampl e exclude dependency is.

depend fnri=pkg:/x11/server/xorg@. 10. 99 type=excl ude

Constraints and Freezing

Constraints

Through the careful use of the various types of depend actions described above, packages can define the ways in
which they are allowed to be upgraded.

In general, we often desire that a group of packages installed on a system be supported and upgraded as a group:
Either all packages in the group are updated, or none of the packages in the group are updated. As mentioned earlier,
thisisthereason for using thei ncor por at e dependency in Oracle Solaris.

The following three partial package manifests show the relationship between the f oo and bar packages and the
nyi ncor p incorporation package:

set nane=pkg.fnri val ue=foo@.O
di r pat h=f oo owner=root group=bin nmode=0755
depend fnri=nyincorp type=require

set nane=pkg.fnri val ue=bar@..O0
di r pat h=bar owner=root group=bin nmode=0755
depend fnri=nyincorp type=require

set nanme=pkg. fnri val ue=nyi ncorp@l.O
depend fnri=foo@l.0 type=incorporate
depend fnri=bar@l.. 0 type=incorporate

The foo and bar packages both have a requi re dependency on the nyi ncorp incorporation. The
nmyi ncorp package has i ncor por at e dependencies such that f oo and bar can be upgraded to at most
version 1.0, to the level of granularity defined by the version number and, if installed, must be at least at version 1.0
or greater.

That is, ani ncor por at e dependency on version 1.0 allows for 1.0.1, 1.0.2.1, etc. but doesn't allow version 1.1,
version 2.0, version 0.9, etc. When we deliver a new incorporation package, one that has i ncor por at e
dependencies at a higher version, we will allow f 00 and bar to upgrade to those versions instead (assuming that
the incorporation package is also being upgraded).

Note here that because f oo and bar both have r equi re dependencies on the nmyi ncorp package, the
incorporation package must always be installed.

However, conflicting with the requirement we stated at the beginning of this section, there are some situations where
we might want to relax the incorporation constraint.

39 Packaging and Delivering Software with the Image Packaging System

Freezing

Perhaps bar can function independently of f oo, but we'd like f oo to remain within the series of versions our
incorporation constrainsiit to.

We can relax the incorporation constraints using facets, allowing the administrator to effectively disable certain
i ncor por at e dependencies. Facets are discussed in more detail in Chapter 7. Briefly, facets are special attributes
that can be applied to actions within a package to enable authors to mark those actions as optional.

When actions are marked with facet attributes in this manner, the actions containing those facets can be enabled or
disabled using thepkg change-facet command.

By convention, facets that optionaly instal incorporate dependencies are named
facet. version-I| ock. <nanme>, where name is the package name containing that depend action.

So, for example, using the example above, we could have the following incorporation:

set nane=pkg.fnri val ue=nyi ncorp@.O
depend frri=foo@.O0 type=i ncorporate
depend fnri=bar@.O0 type=i ncorporate facet.version-I|ock. bar=true

This incorporation includes our depend action by default, constraining bar to version 1.0. The following
command relaxes this constraint:

pkg change-facet version-|ock. bar=fal se

Thebar packageisfree from the incorporation constraints, and can be upgraded to version 2.0 if necessary.

Freezing

So far, al of the discussion has been around constraints that have been applied during the package authoring process,
by modifying the package manifests themselves.

pkg(1l) asohasameansfor the administrator to apply constraints to the system at runtime.

Using the pkg freeze command, the administrator can prevent a given package from being updated past either
its current version, or a version specified on the command line. This capability is effectively the same as an
i ncor por at e dependency.

Seethepkg(1l) man pagefor moreinformation onthefreeze command.

In order to apply more complex dependenciesto an image, it is necessary to create and install a package that includes
those dependencies.

40

Chapter 7

Chapter 7

Allowing Variations

In this chapter we explore how variants and facets are used in IPS to provide different installation options to the end
user.

Variants

Since Oracle Solaris supports multiple architectures, one common error made with the SVR4 packaging system was
the accidental installation of packages for an incorrect architecture. With the introduction of software repositories,
the prospect of maintaining a separate repository for each supported architecture seemed unappealing to 1SVs and
error prone for customers. As aresult, |PS supportsinstallation of a single package on multiple architectures.

The mechanism that implements this feature is called a variant. A variant enables the properties of the target image
to determine which software components are actually installed.

A variant hastwo parts: its name, and the list of possible values. The variants defined in Oracle Solaris 11 are:

Name Values
variant.arch sparc, 1386
variant.opensolaris.zone global, nonglobal
variant.debug.* true, false

Variants appear in two placesin a package:

* A set action namesthe variant and defines the values that apply to this package.

« Any action that can only be installed for a subset of the variant values has a tag that specifies the name of
the variant and the value on which it isinstalled.

For example, a package that deliversthe symbolic link / var / | d/ 64 might include:

set nane=vari ant.arch val ue=sparc val ue=i 386

di r group=bi n node=0755 owner =root path=var/Ild

di r group=bi n node=0755 owner =root path=var/| d/ and64 \
vari ant. ar ch=i 386

di r group=bi n node=0755 owner =root path=var/|d/sparcv9 \
vari ant. ar ch=sparc

i nk pat h=var/1d/ 32 target=.

i nk pat h=var/|d/ 64 target=sparcv9 vari ant. arch=sparc

i nk pat h=var/|d/ 64 target=and64 vari ant. arch=i 386

Note that components that are delivered on both sparc and i386 receive no variant tag, but those delivered to one
architecture or the other receive the appropriate tag. It is perfectly reasonable for actions to contain multiple tags for
different variant names; there might be debug and nondebug binaries for both sparc and i1386.

In Oracle Solaris, kernel components are commonly elided from packages installed in zones, as they serve no useful
purpose. Thus, they are marked with the opensol ari s. zone variant set to gl obal so that they are not
installed in non-global zones. This is typically done in the manifest during publication with a pkgnogri fy(1)
rule. Thus the packages from the i386 and sparc builds are aready marked for zones. We then use the
pkgner ge(1l) command to take the packages from the sparc and i386 builds and merge them together. Thisis far
more reliable and faster than attempting to construct such packages manually.

41 Packaging and Delivering Software with the Image Packaging System

Facets

In general, it is not practical to define new variants without modifying the packaging system as no practical means
currently exists for defining a default value for variants in general. Package developers cannot define new variants at
present.

However, the vari ant . debug. * portion of the variant nhamespace is predefined to have a default version of
f al se; thus, developers can provide debug versions of their components, tagged with the appropriate variant, and
users can select that variant if problems arise. Remember that variants are set per image, so selecting a suitable name
that is unique at the appropriate resolution for that piece of software isimportant.

Note that variant tags are applied to any actions that differ between architectures during merging; this includes
dependencies, set actions, etc. Packages that are marked as not supporting one of the variant values of the current
image are not considered for installation.

The pkgnerge(1l) man page provides several examples of merging packages. Note that it will merge across
multiple different variants at the same time if needed.

Facets

Often, package devel opers have optional portions of their software that actually belong with the main body, but some
people might not want to install. Some examples are localization files for different locales, man pages and other
documentation, header files needed only by developers or DTrace users.

Traditionally, such optional content has been placed in separate packages with an arbitrarily selected naming
convention (such as appending - dev or - devel to the package name) enabling administrators to select the
optional content.

This has led to various problems, such as adding a new locale for al the software on a system being arather irritating
task, as the admin has to discover al the necessary packages by examining the lists of available packages.

IPS has implemented a mechanism similar to variants called facets to deal with this problem. Like variants, facets
have a name and avalue. Thevalueis either settot r ue orf al se intheimage. The default valueist r ue. The
facet namespace is hierarchal, with matching rules such that the longest match wins.

For example, the default value for all facets is t r ue; the pkg(1) client implicitly sets f acet.* to true.
Documentation in Oracle Solaris packages is tagged with the type of documentation. For example, man pages are
tagged with f acet . doc. man=t r ue in the package manifests.

The following commands include man pages but exclude all other documentation from being installed in this image:

pkg change-facet facet.doc.*=fal se
pkg change-facet facet.doc. man=true

Similarly, the following commandsinstall only the German localization in thisimage:

pkg change-facet facet.l|ocal e.*=fal se
pkg change-facet facet.|ocal e.de=true

If an action contains multiple facet tags, the action isinstalled if the value of any of the facet tagsist r ue.
Thepkg facet command isuseful in determining which facets are set in the image.

The package developer can use pkgnogri fy(1) to quickly tag his man pages, localizations, etc. using regular
expressions to match the different types of files. Thisis described in detail in Chapter 8.

Facets can also be used to manage dependencies, essentially turning dependencies on and off, depending on whether
the facet is set. See Chapter 6 for adiscussion of f acet . ver si on-1 ock. *.

Oracle Solaris facets that might be of use for software devel opers include:

42

Facets

facet.devel

facet.locae.es BO

facet.localelt LT

facet.doc facet.locale.es CL facet.locale.lv
facet.doc.man facet.locae.es CO facet.localelv_LV
facet.doc.pdf facet.locae.es CR facet.locale.mk
facet.doc.info facet.locale.es DO facet.locaemk MK
facet.doc.html facet.locae.es EC facet.locale.ml
facet.locale facet.locale.es ES facet.localeml _IN
facet.locale.af facet.locaees GT facet.locale.mr

facet.locadeaf ZA

facet.locale.es HN

facet.localemr_IN

facet.locale.ar

facet.locae.es MX

facet.locale.ms

facet.locdear AE

facet.locale.es NI

facet.locdems MY

facet.localear BH

facet.locale.es PA

facet.locale.mt

facet.localear DZ

facet.locale.es PE

facet.locdemt MT

facet.localear EG

facet.locae.es PR

facet.locale.nb

facet.localear 1Q

facet.locale.es PY

facet.localenb NO

facet.locale.ar_JO

facet.locale.es SV

facet.locae.nl

facet.locaear KW

facet.locale.es US

facet.locaenl_BE

facet.locadear LY

facet.localees UY

facet.locale.nl _NL

facet.locaear MA

facet.locale.es VE

facet.locale.nn

facet.locaear OM

facet.locale.et

facet.localenn_NO

facet.locdear QA

facet.locale.et EE

facet.locale.no

facet.localear SA

facet.locae.eu

facet.locale.or

facet.locaear TN facet.localefi facet.locale.or IN
facet.locdear YE facet.localefi_Fl facet.locale.pa
facet.locale.as facet.locale.fr facet.locale.pa IN

facet.locaeas IN

facet.localefr BE

facet.locale.pl

facet.locale.az

facet.localefr CA

facet.locale.pl_PL

facet.localeaz AZ

facet.localefr CH

facet.locale.pt

facet.locale.be facet.locaefr FR facet.locale.pt BR
facet.locaebe BY facet.localefr LU facet.locale.pt_ PT
facet.locale.bg facet.locale.ga facet.localero
facet.locale.bg BG facet.locale.gl facet.localero_RO
facet.locale.bn facet.locale.gu facet.locale.ru

facet.locale.bn_IN

facet.locae.gu IN

facet.localeru RU

facet.locae.bs

facet.locale.he

facet.localeru UA

43 Packaging and Delivering Software with the Image Packaging System

Facets

facet.localebs BA

facet.localehe IL

facet.locae.rw

facet.locale.ca facet.locale.hi facet.locale.sa
facet.locale.ca ES facet.locale.hi IN facet.locale.sa IN
facet.locale.cs facet.locale.hr facet.locale.sk
facet.locale.cs CZ facet.locaehr HR facet.locale.sk_SK
facet.locale.da facet.locale.hu facet.locale.dl
facet.locale.da DK facet.locae.hu HU facet.locaed Sl
facet.locale.de facet.locale.hy facet.locale.sq
facet.locae.de AT facet.locae.hy AM facet.localesq AL
facet.locae.de BE facet.locale.id facet.locale.sr
facet.locae.de CH facet.localeid ID facet.locaesr ME
facet.locale.de DE facet.locale.is facet.locae.sr RS

facet.localede LI

facet.locaeis IS

facet.locale.sv

facet.localede LU

facet.locae.it

facet.localesv_SE

facet.locae.€

facet.localeit CH

facet.locale.ta

facet.locaee CY

facet.locaeit IT

facet.localeta IN

facet.localeel GR

facet.localeja

facet.locde.te

facet.locale.en

facet.localeja JP

facet.localete IN

facet.localeen AU facet.locaeka facet.localeth
facet.localeen BW facet.localeka GE facet.localeth TH
facet.locaeen CA facet.locale.kk facet.localetr
facet.locae.en GB facet.locaekk _KZ facet.localetr TR
facet.locaeen HK facet.locaekn facet.locale.uk

facet.localeen |IE

facet.localekn_IN

facet.locae.uk_UA

facet.localeen IN facet.locale.ko facet.locale.vi
facet.localeen MT facet.localeko KR facet.localevi_VN
facet.locaeen NZ facet.locaeks facet.locale.zh

facet.locae.en PH

facet.localeks IN

facet.locale.zh CN

facet.localeen SG facet.locale.ku facet.locae.zh HK
facet.localeen US facet.locaeku TR facet.locae.zh HK
facet.locaeen ZW facet.locale.ky facet.locae.zh SG
facet.locale.eo facet.localeky KG facet.locaezh TW
facet.locaees AR facet.localelg

44

Chapter 8

Chapter 8

Modifying Package Manifests Programmatically

This chapter explains how package manifests can be machine edited to permit the automated annotation and
checking of package manifests.

Chapter 4 covers the basics for how to publish packages. These techniques are al that is necessary to publish a
package, but when publishing a large package, alarge number of packages, or publishing packages over a period of
time, there can be aspects which involve a significant time commitment for doing repetitive tasks.

For example, one rule that's used when publishing Oracle Solaris is that all kernel modules should be tagged as
requiring a reboot.

One option would be to impose this constraint through human examination and intervention, but that would be costly
and likely error prone.

A second option would be to write a script or program that would handle tagging these actions. The difficulty hereis
that to be sure the program tagged actions correctly, it would need to parse the actions. This can certainly be done,
but it duplicates alot of functionality already in the IPS framework.

The third, and best, option is to use pkgnogri fy(1), provided by IPS, to transform the package manifests in
repeatable ways.

There are two types of rules pkgnogri fy(1) understands, transform and include. Transform rules are used to
modify actions. Include rules cause other files to be processed.

Transform Rules

When publishing Oracle Solaris, we made the assumption that all files delivering in a subdirectory named
"ker nel " should be treated as kernel modules. Thisis the rule used to do the tagging:

<transformfile path=.*kernel/.+ -> default reboot-needed true>

e Theruleisenclosed with ‘<’ and *>". The portion of the rule to the left of the ‘- >’ is the selection section
or matching section. The portion to theright of the ‘- >’ isthe execution section of the operation.

 ‘t ransf or ni isthe type of therule
«‘fil e meansthisruleisforfil e actions

e ‘pat h=. *ker nel /. +' means that only file actions with a path attribute that matches the regular
expression ‘. *ker nel /. +" aretransformed

« ‘def aul t " means that what follows should be added to a matching action unless a value for the attribute
has already been set

 ‘reboot - needed’ isthe attribute being set
* ‘t rue’ isthe value of the attribute

The selection or matching section of a transform rule can restrict by action type and by action attribute values. The
pkgnogri fy(1l) man page goes into detail about how these matching rules work, but the typical uses are for
selecting actions which deliver to certain areas of the file system.

45 Packaging and Delivering Software with the Image Packaging System

Include Rules

For example, arule that began like this
<transformfile dir |ink hardlink path=usr/bin.* -> [operation]>

could be used to ensure that usr / bi n and everything delivered inside of it defaulted to the correct user or group.
There is along list of operations which pkgnogri fy(1) can perform, detailed in the man page, which enable a
package developer to programmatically add, remove, set, and edit actions' attributes as well as add and remove entire
actions.

Include Rules

Include rules enable transforms to be spread across multiple files and subsets reused by different manifests. Suppose
a developer needs to deliver two packages. A and B. Both packages should have their sour ce-url set to the
same url, but only package B should haveitsfilesin/ et ¢ setto begr oup=sys.

In the manifest for package A, an include rule which pulls in the file with the sour ce- ur | transform should be
added. In package B, an include rule which pulls in the file containing the file gr oup setting transform should be
added.

Finally, an include rule which pullsin the file with the sour ce- ur | transform should be added to either package
B or the file with the transform that sets the group.

Transform Order

Transforms are applied in the order in which they are encountered in afile. The ordering can be used to simplify the
matching portions of transforms.

Suppose al files delivered in / f oo should have a default group of sys, except those delivered in / f oo/ bar ,
which should have a default group of bi n.

It's certainly possible to write a complex regular expression which matches all paths that begin with / f 0o, except
those that begin with / f oo/ bar . Using the ordering of transforms makes it much simpler.

When ordering default transforms, always go from most specific to most general. Otherwise the latter rules will
never be used.

In this case, the two rules would look like this:

<transformfile path=foo/bar/.* -> default group bin>
<transformfile path=foo/.* -> default group sys>

Using transforms to add an action using the matching described above would be difficult since the package
developer would need to find a pattern which matched each package delivered once and only once.

pkgnogri fy(1) -createssynthetic actionsto help with thisissue. Aspkgnogri fy(1) processes manifests, for
each manifest that sets the pkg. f nri attribute, a synthetic pkg action is created by pkgrogri fy(1). The
package developer can match against the pkg action asif it was actually in the manifest.

For example, suppose a package developer wanted to add to every package an action containing the website
(foo.com) where the source code for the delivered software can be found. The following transform accomplishes
that:

<transform pkg -> emt set info.source-url=http://foo.conr

46

Packaged Transforms

Packaged Transforms

As a convenience to developers, a set of the transforms that were used when packaging Oracle Solaris itself are
availablein/ usr/ shar e/ pkg/ t r ansf or ms. At the time of writing, these are:
developer

Setsf acet. devel on*.h header filesdelivered to/ usr/. */i ncl ude, archive and lint libraries,
pkg- confi g(1l) datafiles, andaut oconf (1) macros.

documentation

Setsavariety of f acet . doc. * facets on documentation files.
locale

Setsavariety of f acet . | ocal e. * facetson fileswhich are locale-specific.
smf-manifests

Adds arestart_fnri actuator pointing to the svc: / syst enf mani f est-i nport: def aul t
on any packaged SMF manifests so that the system will import that manifest after the package isinstalled.

47 Packaging and Delivering Software with the Image Packaging System

Chapter 9

Chapter 9
Causing System Change With SMF

This chapter explains how to use the Service Management Facility (SMF) to automatically handle any necessary
system changes that should occur as a result of package installation.

The package developer must determine which actions, when initially installed, updated or removed should cause a
change to the system. For each of those actions, the package developer needs to determine which existing service
provides the desired system change, or write a new service which provides the needed functionality and ensure that
service is delivered to the system.

When the set of actions has been determined, those actions must be tagged in the package manifest with the correct
actuator in order to cause that system change to occur.

As discussed in Chapter 1, some system changes are needed to employ the software self-assembly concept used by
Oracle Solaris and IPS, but system changes are not limited to this role.

Well discuss the available actuators in the next section and then provide some examples.

Actuators
The following tags can be added to any action in a manifest:

reboot-needed

This actuator takes the value t r ue or f al se. This actuator declares that installation, removal or update of the
tagged action requires areboot when IPSis operating on alive image.

The following actuators are related to SMF services, and are the ones we will focus on in this chapter.

SMF Actuators

SMF actuators take asingle SMF FMRI as a value, possibly including globbing characters to match multiple FMRISs.
If the same FMRI is tagged by multiple actions, possibly across multiple packages being operated on, IPS will only
trigger that actuator once.

The following list of SMF actuators describes the effect on the service FMRI that is the value of each named
actuator:

disable fmri

The given service should be disabled prior to the package operation being performed
refresh_fmri

The given service should be refreshed after the package operation has compl eted
restart_fmri

The given service should be restarted after the package operation has completed
suspend_fmri

The given service should be temporarily suspended prior to the package operation and enabled once it has
completed

Delivering an SMF Service

A package that delivers a new SMF service usually needs a system change. The package delivers the SMF manifest
file and method script, and the packaged application requires that the SMF service it delivers must be available after
package installation.

48

A Service That Runs Once

In older Oracle Solaris releases, SVR4 post-install scripting would run an SMF command to restart the
svc: /systen nani fest-inport: default service

In IPS, the action delivering the manifest file into | i b/ svc/ mani fest or var/svc/ mani fest should
instead be tagged with the actuator: rest art _fnri =svc:/system nmani f est -i nport:default.

The actuator ensures that when the manifest is added, updated, or removed, the nani f est -i nport service is
restarted, causing the service delivered by that SMF manifest to be added, updated, or removed.

If the package is added to a live-system, this action is performed once all packages have been added to the system
during that packaging operation. If the package is added to an aternate boot environment, this action is performed
during the first boot of that boot environment.

A Service That Runs Once

Another common example is a system change that performs one-time configuration of the new software
environment.

In the package delivering our application, we would include the following actions:

file path=opt/ myapplication/bin/run-once.sh owner=root group=sys node=0755
file path=lib/svc/ manifest/application/ myapplication-run-once.xnm owner=root group=sys \
node=0644 restart_fnri=svc:/systenl mani fest-inport:default

The SMF method script for the service could contain anything that is needed to further configure our application, or
modify the system so that our application runs efficiently. In this example, well just have it write a simple log

message.
Generally, we also want to ensure that the SMF service only performs work if the application has not already been

configured. Another approach would be to package the service separate from the application itself, then have the
method script remove the package that contains the service.

Our method script is:

#! / usr/ bi n/ sh
. Iliblsvc/sharelsnf_include. sh
assenbl ed=$(/ usr/ bi n/ svcprop -p confi g/ assenbl ed $SM~ FMRI)
if ["$assenbl ed" == "true"] ; then
exit $SMF_EXI T_OK
fi
svccefg -s $SM-_FMRI set prop confi g/ assenbl ed = true
svcefg -s $SM-_FMRI refresh
echo "This is output fromour run-once method script"

When testing a method script, it is advisable to run pkg veri fy before and after installing the package that runs
the actuator. Compare the output of each run to ensure that the script doesn't attempt to modify any files that are not
marked as editable.

49 Packaging and Delivering Software with the Image Packaging System

A Service That Runs Once

Our SMF service manifestis;

<?xm version="1.0"7?>
<! DOCTYPE servi ce_bundl e SYSTEM "/ usr/share/lib/xm /dtd/ service_bundle.dtd. 1">

<servi ce_bundl e type='mani fest' nane=' MyAppl i cation:run-once' >

<servi ce
nane=' appl i cati on/ nyappl i cation/run-once
type='servi ce'
version="1"'>

<si ngl e_i nstance />

<dependency
name='fs-1 ocal
groupi ng='require_al |
restart_on=' none'
type='service' >
<service_fmri value='svc:/system filesystenllocal:default' />
</ dependency>

<dependent
nanme=' myappl i cati on_sel f-assenbl y- conpl et e’
gr oupi ng=' opti onal _al I’
restart_on='none' >
<service_fnri value= svc:/mlestonel/self-assenbly-conplete' />
</ dependent >
<i nstance enabl ed="true' nanme='defaul t'>
<exec_rmet hod
t ype=' net hod
nanme='start'
exec='/opt/ myapplication/bin/run-once. sh'
ti meout _seconds='0"'/>

<exec_rmet hod
type=' net hod
nanme=' st op'
exec=':true
ti meout _seconds='0"'/>

<property_group nane='startd type='franework'>
<propval nane='duration' type='astring' value='transient' />
</ property_group>

<property_group nane='config' type='application >
<propval name='assenbl ed’" type=' bool ean' val ue='fal se' />
</ property_group>
</instance>
</ servi ce>
</ servi ce_bundl e>

Note that the SMF service hasa st art d/ durati on property settotransi ent sothat svc.startd(1M
doesn't track processes for this service. Also note that it adds itself as a dependency to the

50

Self-Assembly Hints

sel f-assenbl y- conpl et e system milestone.

Self-Assembly Hints

Here are some additional hints when writing SMF methods to support self-assembly:

Timestamps

In an SMF method script, it can be efficient to use the output of I s -t on adirectory of packaged configuration
file fragments, using head -1 to select the most recently changed version. The timestamp of this file can be
compared with the timestamp of the unpackaged configuration file which is compiled from those fragments. This
comparison can be used when deciding whether the service needs to recompile the configuration file.

This can be useful if the process of compiling a configuration file from those fragments is expensive to perform each
time the method script runs.
Timeouts

In the example SMF service used in this chapter, we had at i meout _seconds value of O for the start method.
This means that SMF will wait indefinitely for self-assembly to complete.

Depending on circumstances, developers might want to impose a finite timeout on their self-assembly processes,
enabling SMF to drop the service to mai nt enance if something goes wrong. This can assist the developer when
debugging.

51 Packaging and Delivering Software with the Image Packaging System

Chapter 10

Chapter 10
Advanced Update

This chapter deals with more complex package update issues, and describes several features in IPS designed to
simplify these problems.

For most update operations, 1PS will automatically do exactly what is needed to install updated packages. There are
some cases, however, that require the devel oper to provide additional information to IPS.

For performance reasons, the solver works purely on the dependency information included in packages. Packages
whose dependencies indicate that they can be installed at the same time but whose content conflicts cause conflict
checking to fail in pre-installation.

An example of conflicting content is two packages installing the same file. If conflict checking fails, the user must
try different package versions and then manually specify acceptable versions.

Ensuring that conflicting packages cannot be installed due to constraining dependencies is a responsibility of the
package developer. As mentioned in Chapter 4, pkgl i nt (1) can assist with thistask.

Renaming, Merging and Splitting Packages

Often, the desired organization of a software component changes, whether because of mistakes in the original
packages, changes in the product or its usage over time, or changes in the surrounding software environment. Also,
sometimes just the name of a package needs to change. When contemplating such changes, thought must be given to
the customer who is upgrading their system to ensure that unintended side effects do not occur.

Three types of package reorganization are discussed in this section, in order of increasingly complex considerations
for pkg update:

1. Renaming single packages

2. Merging two packages

3. Splitting a package
Renaming a Single Package

Simple renames are straightforward. |PS provides a mechanism to indicate that a package has been renamed. To
rename a package, publish a new version of the existing package with the following two actions:

* A set actioninthefollowing form:

set nane=pkg. renanmed val ue=true

* Arequire dependency onthe new package
A renamed package cannot deliver contents other than depend or set actions.

The new package must ensure that it cannot be installed at the same time as the original package before the rename.
If both packages are covered by the same incorporation dependency, this is automatic.

If not, the new package must contain an opt i onal dependency on the old package at the renamed version. This
ensures that the solver will not select both packages, which would fail conflict checking.

Anyone installing this renamed package will automatically receive the new named package, since it is a dependency
of the old version. If a renamed package is nhot depended upon by any other packages, it is automatically removed
from the system. The presence of older software can cause a number of renamed packages to be shown as
i nst al | ed; when that older software is removed the renamed packages are automatically removed as well.

52

Merging Two Packages

Packages can be renamed multiple times without issue, although this is not recommended as it can be confusing to
users.
Merging Two Packages

Merging packagesis straightforward as well. The following two cases are examples of merging packages.

* One package absorbs another package at the renamed version.

» Two packages are renamed to the same new package name.

One Package Absorbs Another

Suppose package A@?2 will absorb package B@3. Simply rename package B to package A@2; remember to include
an optional dependency in A@2 on B@3 unless both packages are incorporated so they update in lockstep as above.
A user upgrading B to B@3 will now get A installed, which has absorbed B.

Two Packages Are Renamed

In this case, simply rename both packages to the name of the new merged package, including two opt i onal
dependencies on the old packages in the new one if they are not otherwise constrained.

Splitting a Package

When you split a package, rename each resulting new package as described in Renaming a Single Package. If one of
the resulting new packages is not renamed, the pre-split and post-split versions of that package are not compatible
and might violate dependency logic when the end user tries to update the package.

Rename the original package, including multiple r equi r e dependencies on all new packages that resulted from
the split. This ensuresthat any package that had a dependency on the origina package will get all the new pieces.

Some components of the split package can be absorbed into existing packages as a merge. See One Package Absorbs
Another.

Obsoleting Packages

Package obsoletion is the mechanism by which packages are emptied of contents and are removed from the system.
Such a package does not satisfy r equi r e dependencies, so an installed package with ar equi r e dependency on
a package that becomes obsolete will prevent update unless a newer version of the installed package is available that
does not containther equi r e dependency.

A package is made obsolete by publishing a new version with no content except for the following set action:
set nane=pkg. obsol et e val ue=true

A package can be made non-obsolete by publishing newer versions. Users who updated through the obsoletion will
lose this package, while those who did not will not.

Preserving Editable Files During Package Renaming or Path Changes

One common issue with updating packages is the migration of editable files, either in the file system or between
packages. | PS attempts to migrate editable files that move between packages (for example, as the result of a rename)
if the file is not renamed and the path of the file has not changed. However, if the path changes, the following must
be done for the user's customizations to be preserved:

If thefil e actionin the old package does not contain the attribute or i gi nal _name, that attribute must be
added. Set the value to the original name of the package, followed by a colon and then the path to the file without a

53 Packaging and Delivering Software with the Image Packaging System

Moving Unpackaged Contents on Directory Removal or Rename

leading '/'. Once thisis present on an editable file, it must not be changed. This value acts as a unique identifier for
all moves going forward so that regardless of the number of versions skipped on an update, the user's content is
properly preserved.

Moving Unpackaged Contents on Directory Removal or Rename

Normally, unpackaged contents are salvaged when the containing directory is removed, because the last reference to
it disappears.

When a directory changes names, the packaging system treats this as the removal of the old directory and the
creation of a new one. Any editable files that are till in the directory when the directory is renamed or removed are
salvaged.

If the old directory has unpackaged content such as log files that should be moved to the new directory, this can be
donewith thesal vage- f r om attribute if placed on the new directory.

For example, suppose we want to rename a directory from:
[opt/ nydat a/ | og

to:
[opt/yourdat a/l og

In the same package version that removes the former directory and introduces the latter directory, include the
following attribute on the di r action that creates/ opt / your dat a/ | og:

sal vage- f rom=opt / mydat a/ | og

Any unpackaged contents of any time are migrated to the new location.

The sal vage- f r om attribute is covered later in this chapter, when discussing data that should be shared between
boot environments.

Delivering Multiple Implementations of a Given Application

In some cases, it can be desirable to deliver multiple implementations of a given application, having all
implementations available on the system, but with one implementation set as the preferred implementation.

The preferred implementation would have symlinks to its binaries installed, say, to /usr/bi n for ease of
discovery. We would also like to allow the administrator to change the preferred implementation as required, without
having to add or remove any additional packages.

A good example of this would be where we have several versions of GCC installed, each in their own package, but
would like/ usr/ bi n/ gcc toaways point to our preferred version.

IPS uses the concept of mediated links for this purpose. A mediated link is a symbolic link that is controlled by the
pkg set-medi at or andpkg unset - nmedi at or commands, documented inthe pkg(1) man page.

Thel i nk actionsin the packages that deliver different implementations of that application are said to participate in
amediation.

54

Moving Unpackaged Contents on Directory Removal or Rename

The following attributescan be set on | i nk actionsto control how mediated links are delivered:

mediator

Specifies the entry in the mediation namespace shared by all path names participating in a given mediation
group (for example pyt hon).

Link mediation can be performed based on medi at or - ver si on and
medi at or - i npl ement ati on. All mediated links for a given path name must specify the same
medi at or . However, not al mediator versions and implementations need to provide a link at a given
path. If a mediation does not provide alink, then the link is removed when that mediation is selected.

A mediator, in combination with a specific version and/or implementation represents a mediation that can
be selected for use by the packaging system.

mediator-version

Specifies the version (expressed as a dot-separated sequence of non-negative integers) of the interface
described by the medi at or attribute. This attribute is required if medi at or is specified and
medi at or-i npl ement ati on isnot. A local system administrator can explicitly set the version to use.
The value specified should generally match the version of the package delivering the link (for example,
runti me/ pyt hon-26 shouldusenedi at or - ver si on=2. 6), athough thisis not required.

mediator -implementation

Specifies the implementation of the mediator for use in addition to or instead of the
medi at or - ver si on. Implementation strings are not considered to be ordered. A string is arbitrarily
selected by pkg(5) if not explicitly specified by a system administrator.

The value can be a string of arbitrary length composed of apha-numeric characters and spaces. If the
implementation itself can be or is versioned, then the version should be specified at the end of the string,
after a'@" (expressed as a dot-separated sequence of non-negative integers). If multiple versions of an
implementation exist, the default behavior is to select the implementation with the highest version.

If only one instance of an implementation-mediation link at a particular path is installed on a system, then
that one is chosen automatically. If future links at the path are installed, the link will not be switched unless
avendor, site, or local override applies, or if one of the links is version-mediated.

mediator-priority

When resolving conflicts in mediated links, pkg(5) normally chooses the link with the greatest value of
nedi at or-version or based on nedi ator-inpl enentati on if that is not possible. This
attribute is used to specify an override for the normal conflict resolution process.

If this attribute is not specified, the default mediator selection logic is applied.

« If thevalueisvendor , thelink is preferred over those that do not haveanedi ator-priority
specified.

« If the value is si t e, the link is preferred over those that have a value of vendor or that do not
haveanedi ator-priority specified.
A local system administrator can override the selection logic described above.

Here are two sample manifests that participate in amediation for thelink / usr / bi n/ nmyapp:

set nane=pkg.fnri val ue=pkg://test/nyapp-inpl-1@.0,5.11:20111021T035233Z
file path=usr/ myapp/5. 8. 4/bi n/ nyapp group=sys node=0755 owner =r oot
i nk pat h=usr/ bi n/ nyapp target=usr/ myapp/5. 8. 4/bin/ myapp nmedi at or =nyapp nedi at or - ver si on=5. 8. 4

set nanme=pkg.fnri val ue=pkg://test/nyapp-inpl-2@.0,5.11:20111021T035239Z
file path=usr/nyapp/5.12/bi n/ nyapp group=sys node=0755 owner =r oot
I'i nk pat h=usr/bi n/ myapp target=usr/nmyapp/5.12/bi n/ myapp nedi at or =nyapp nedi at or - ver si on=5. 12

55

Packaging and Delivering Software with the Image Packaging System

Delivering Directories To Be Shared Across Boot Environments

We can install both of these packages to the same image:

$ pkg list nmyapp-inpl-1 nyapp-inpl-2

NAME (PUBLI SHER) VERSI ON | FO
myapp-i npl -1 1.0 i--
myapp-i npl - 2 1.0 i--

Using thepkg medi at or command, we can see the mediationsin use:

$ pkg nedi at or

MEDI ATOR VER. SRC. VERSI ON | MPL. SRC. | MPLEMENTATI ON

nmyapp | ocal 5.12 system

$ |'s -al usr/bin/nyapp

| rwxr wxr wx 1 root sys 23 Cct 21 16:58 usr/bin/ myapp -> usr/nmyapp/5. 12/ bi n/ nyapp

We can see which other packages participate inthe nyapp mediation using pkg sear ch:

$ pkg search -ro path,target, medi at or, nedi at or - ver si on, pkg. shortfnri ::mediator: nyapp
PATH TARGET MEDI ATOR MEDI ATOR- VERSI ON PKG. SHORTFMRI

usr/ bi n/ myapp usr/ nyapp/ 5. 12/ bi n/ myapp nyapp 5.12 pkg: / nyapp-inpl -2@. 0
usr/ bi n/ myapp usr/ nyapp/ 5. 8. 4/ bi n/ myapp nyapp 5.8.4 pkg: / nyapp-inpl -1@. 0

We can aso change the mediation as desired:

pkg set-nediator -V 5.8.4 nyapp
Packages to update: 2

Medi ators to change: 1

Create boot environment: No
Create backup boot environnent: No

PHASE | TEVMS
I ndexi ng Packages 2/ 2
PHASE ACTI ONS
Updat e Phase 1/1
PHASE | TEMS
I mage State Update Phase 2/ 2
Readi ng Exi sting | ndex 8/ 8
I ndexi ng Packages 2/ 2

|s -al usr/bin/nmyapp
| rwxr wxr wx 1 root sys 24 Cct 21 17:02 usr/bin/nyapp -> usr/ nmyapp/5. 8. 4/ bi n/ nyapp

Delivering Directories To Be Shared Across Boot Environments

In general, IPS doesn't support delivery of packaged contents to datasets that span boot environments (BES). Thisis
because such shared contents, if updated in one boot environment, might not meet the definitions for other boot
environments. For example, we could foresee a case whereapkg veri fy of packaged content that was delivered
with different attributes by packages in two separate boot environments, yet shared between them, would result in in
errors.

However, some of the unpackaged files (the files stored in the file system that were not delivered by any IPS
package) found in a boot environment must be shared across boot environments to preserve normal system operation
in the face of multiple boot environments.

Some examplesinclude/ var/ mai | ,/ var /| og andthelike. Customers are likely to place such data on separate
datasets as well, or on remote file servers. However, creating per-directory datasets would mean that many datasets

56

Delivering Directories To Be Shared Across Boot Environments

would be created per zone, which is not desirable.

The goa can be achieved using a shared dataset, mounted into the BE during boot, with symboalic links from
locations inside the BE pointing into that dataset. Inside the BE, applications deliver primordial directory structure to
a.migrate staging directory.

As noted above, no packaged file content should be shared between boot environments, furthermore, it is not
possible or desirable to share any file system objects other than files.

Update is supported from older versions of a package that did not share content. Useasal vage- f r om attribute as
discussed in Moving Unpackaged Contents on Directory Removal or Rename and shown in the example below.

The package should no longer deliver the old directory.

During boot, a script can be run as part of an SMF method script to move file content from the .migrate directory
into the shared dataset. This script is responsible for recreating the directory structure that it finds under the .migrate
directory in the boot environment, and moving file contents from the .migrate directory to the shared dataset.

For example, for a package that previously delivered the action:
di r pat h=opt/ myapplication/| ogs owner=daenon group=daenon nmode=0755

we first create a dataset r pool / OPTSHARE (which can be used by other shared content from / opt) This dataset
creation could alternatively be done by the SMF method script during boot:

zfs create rpool / OPTSHARE
zfs set mount poi nt =/ opt/share rpool / OPTSHARE

A package can then deliver a symbolic link from their previously packaged directory to an as-yet nonexistent target
beneath / opt / shar e:

| i nk pat h=opt/ nyapplication/logs target=../../opt/share/ nyapplication/logs
Packages can now deliver the directory into this.migrate area:

dir path=opt/.m grate/nyapplication/logs owner=daenon group=daenon \
nmode=0755 reboot - needed=true sal vage-from=/ opt/ myapplication/l ogs

Weusethesal vage- f r om attribute to move files from the old location into the .migrate directory.

We require a r eboot - needed actuator for these directory entries in order to properly support updates of
Immutable Zones mentioned in Chapter 1, which boot as far as the
svc:/ m | estone/sel f-assenbl y-conpl et e: default milestone in read/write mode if self-assembly is
required, before rebooting read-only. See the discussion of fi | e- mac- profil e inthezonecfg(1M manua
page for more on Immutable Zones.

Our SMF service, on reboot, will then move any salvaged directory content into the shared dataset, and the symbolic
linksfrom/ opt / nyappl i cati on pointinto that shared dataset.

57 Packaging and Delivering Software with the Image Packaging System

Chapter 11

Chapter 11
Signing Packages

One important consideration in the design of IPS was being able to validate that the software installed on the
customer's machine was actually as originally specified by the publisher. This ability to validate the installed system
iskey for both the customer and the support engineering staff.

To support this validation, manifests can be signed in IPS with the signatures becoming part of the manifest.
Signatures are represented as actions like all other manifest content. Since manifests contain all the package
metadata - file permissions, ownership, content hashes, etc., a si gnat ur e action that validates that the manifest
has not be altered since it was published is an important part of system validation.

The si gnat ur e actions form a tree that includes the delivered binaries such that complete verification of the
installed software is possible.

There are other uses for manifest signing beyond validation; signatures can also be used to indicate approval by other
organizations or parties.

For example, the internal QA organization could sign manifests of packages once it was determined the packages
were qualified for production use. Policy could mandate such approvals prior to installation.

Asaresult, auseful characteristic for signaturesis to be independent of other signaturesin a manifest. Signatures can
be added or removed without invalidating the other signatures that might be present. This feature also facilitates
production hand offs, with signatures used along the path to indicate completion along the way. Subsequent steps can
optionally remove previous signatures at any time without ill effect.

si gnat ur e actionslook likethis:

signature <hash of certificate> al gorithme<signature al gorithm \
val ue=<si gnat ure val ue> \
chai n="<hashes of certs needed to validate primary certificate>" \
ver si on=<pkg versi on of signature>

The payload and chai n attributes represent the packaging hash of the PEM (Privacy Enhanced Mail) files,
containing the x.509 certificates downloadable from the originating repository. The value is the signed hash of the
manifest's message text, prepared as discussed below. The payload certificate is the certificate which verifies the
valueinval ue.

The other certificates presented needs to form a certificate path that leads from the payload certificate to the trust
anchors that were established as part of the publisher configuration.

Two types of signature algorithms are currently supported. The first is the RSA group of signature algorithms; an
exampleisr sa- sha256. The bit after the dash specifies the hash algorithm to use to change the message text into
asingle value the RSA agorithm can use.

The second type of signature algorithm is compute the hash only. This type of agorithm exists primarily for testing
and process verification purposes and presents the hash as the signature value. A signature action of this type is
indicated by the lack of a payload certificate hash. This type of signature action is verified if the image is configured
to check signatures. Its presence however does not count as a signature if signatures are required:

signature al gorithm=<hash al gorithnm val ue=<hash> \
ver si on=<pkg versi on of signature>

Additional metadata can be added to a signature if desired, as with any other action. Such metadata is protected by
that signature.

58

Errors Involving Signed Packages

Policies can be set for the image or for specific publishers. The policies include ignoring signatures, verifying
existing signatures, requiring signatures, and requiring that specific common names must be seen in the chain of
trust. Other policies might be added in the future.
Publishing a signed manifest is atwo step process:

1. Publish the package unsigned to a repository.

2. Update the package in place, using pkgsi gn(1) to append a signature action to the manifest in the

repository.

This process |eaves the package intact, including its timestamp.
This process enables a signature action to be added by someone other than the publisher without invalidating the
original publisher's signature. For example, the QA department of a company might want to sign all packages that

are installed internally to indicate they have been approved for use, but not republish the packages, which would
create a new timestamp and invalidate the signature of the original publisher.

Note that pkgsi gn(1) istheonly way to publish a signed package. If one attempts to publish a package aready
containing a signature, that signature is removed and a warning is emitted. The pkgsi gn(1) man page contains
examples of how to use pkgsi gn(1).

One current restriction to be aware of is that signature actions with variants are ignored. That means that doing a
pkgnmer ge(1) on apair of manifests will invalidate any signatures which were previously applied. Signing the
package should be the last step of the package development before the package is tested.

pkgsi gn(1) does not perform all the possible checks for its inputs when signing packages. This means it's
important to check signed packages to ensure that they can be properly installed after being signed. What follows are
some of the errors that can appear when attempting to install or update a signed package along with explanations of
what the errors mean and how to solve the problem.

Errors Involving Signed Packages

A signed package can fail to install or update for reasons that are unique to signed packages. For example, if a
package's signature fails to verify, or if its chain of trust can't be verified or anchored to a trusted certificate, the
package will fail to install.

When installing signed packages, certain image properties will influence the checks that are performed on packages.
These properties are:

esignature-policy
e si gnat ure-required- nanes
etrust-anchor-directory
Seethepkg(1) man page for further information about these properties, and their permitted values.

What follows are some examples of different failure paths and what can be done to resolve them.

Example 1: Chain Certificate Not Found
pkg install: The certificate which issued this certificate:
[C=US/ ST=Cal i f or ni a/ L=Menl o Par k/ O=pkg5/ CN=cs1_chl _t a3/ enni | Address=csl _chl_ta3
could not be found. The issuer is:
/ C=US/ ST=Cal i f or ni a/ L=Menl o Par k/ O=pkg5/ CN=ch1_t a3/ emai | Addr ess=chl_t a3

The package invol ved is:pkg://test/exanpl e_pkg@.0,5.11-0: 20110919T1841527

The error shown above happens when a certificate in the chain of trust is missing or otherwise erroneous.

59 Packaging and Delivering Software with the Image Packaging System

Example 2: Authorized Certificate Not Found

In this case, there were three certificates in the chain of trust when the package was signed. It was rooted in the trust
anchor, acertificatenamedt a3.t a3 signed achain cert namedchl_t a3.

chl ta3 signed acode signing certificate named cs1_chl t a3. When pkg(1) triedto instal the package, it
was able to locate the code signing certificate, cs1 chl _t a3, but it couldn't locate the chain certificate,
chl_t a3, sothechain of trust could not be established.

The most common cause of this problem is failing to provide the right certificate(s) to the -i option of
pkgsign(1).

Example 2: Authorized Certificate Not Found

pkg install: The certificate which issued this certificate:

[C=US/ ST=Cal i f orni a/ L=Menl o Par k/ O=pkg5/ CN=cs1_cs8 chl_t a3/ emai | Address=csl cs8 chl ta3
coul d not be found. The issuer is:

[C=US/ ST=Cal i f orni a/ L=Menl o Par k/ O=pkg5/ CN=cs8_ch1_t a3/ enni | Addr ess=cs8_chl_t a3

The package invol ved is:pkg://test/exanpl e_pkg@. 0, 5.11-0:20110919T7201101Z

The error shown aboveis similar to the error in Example 1 but has a different cause.

In this case, the package was signed using the cs1_cs8 chl_ta3 certificate, which was signed by the
cs8 chl ta3 certificate.

The problem isthat thecs8_chl_t a3 certificate wasn't authorized to sign other certificates. (To be specific, the
cs8_chl_t a3 certificate had thebasi cConstrai nt s extension set to CA: f al se and marked critical.)

When pkg(1) verifies the chain of trust, it doesn't find a certificate which was allowed to sign the
csl cs8 chl_ta3 certificate. Since the chain of trust can't be verified from the leaf to the root, pkg(1)
prevents the package from being installed.

Example 3: Untrusted Self-Signed Certificate

pkg install: Chain was rooted in an untrusted sel f-signed certificate.
The package invol ved is:pkg://test/exanpl e pkg@l.0,5.11-0:20110919T185335Z

The error shown above happens when a chain of trust ends in a self-signed certificate which isn't trusted by the
system.

When a developer creates a chain of certificates using openssl for testing, the root certificate is usualy
self-signed, since ther€'s little reason to have an outside company verify a certificate only used for testing.

In atest situation, there are two solutions.

The first is to add the self-signed certificate which is the root of the chain of trust into / et ¢/ certs/ CA and
refreshthesyst enif ca-certificates service

This mirrors the likely situation customers will encounter where a production package is signed with a certificate
that's ultimately rooted in a certificate that's delivered with the operating system as a trust anchor.

The second solution is to approve the self-signed certificate for the publisher which offers the package for testing by
using the- - approve-ca- cert optionfortheset - publ i sher subcommandtopkg(1).

60

Example 4: Signature Value Does Not Match Expected Value

Example 4: Signature Value Does Not Match Expected Value

pkg install: A signature in pkg://test/exanpl e _pkg@.O0,5.11-0:20110919T195801Z
could not be verified for this reason:

The signature value did not match the expected value. Res: 0

The signature's hash is 0cel5¢572961b7a0413b8390c90b7cac18ee9010

The error shown above happens when the value on the signature action could not be verified using the certificate
which the action claims was paired with the key used to sign the package.

There are two possible causes for an error like this.

The first is that the package has been changed since it was signed. This is unlikely to happen since pkgsend(1)
will strip existing signature actions during publication (since the new timestamp the package will get will invalidate
the old signature) but is possible if the package's manifest has been hand edited since signing.

The second, and most likely cause, isthat the key and certificate used to the sign the package weren't a matched pair.
If the certificate given to the - ¢ option of pkgsi gn(1) wasn't created with the key given to the - k option of
pkgsi gn(1), the packageis signed, but its signature won't be verified.

Example 5: Unknown Critical Extension

pkg install: The certificate whose subject is

[/ C=US/ ST=Cal i f or ni a/ L=Menl o Par k/ O=pkg5/ CN=cs2_chl_t a3/ enuni | Address=cs2_chl_ta3
could not be verified because it uses a critical extension that pkg5 cannot
handl e yet. Extension nane:issuerAl t Name

Ext ensi on val ue: <EMPTY>

The error above happens when a certificate in the chain of trust uses a critical extension which pkg(1) doesn't
understand.

Until pkg(1) learns how to process that critical extension, the only solution is to regenerate the certificate without
the problematic critical extension.

Example 6: Unknown Extension Value

pkg install: The certificate whose subject is

[C=US/ ST=Cal i f or ni a/ L=Menl o Par k/ O=pkg5/ CN=cs5_chl t a3/ enuni | Address=cs5 chl_ta3
could not be verified because it has an extension with a value that pkg(5)

does not under st and.

Ext ensi on nane: keyUsage

Ext ensi on val ue: Enci pher Only

The error above is similar to the error in Example 5 except that the problem is not with an unfamiliar critical
extension but with avaluethat pkg(1) doesn't understand for an extension which pkg(1) does understand.

In this case, pkg(1l) understands the keyUsage extension, but doesn't understand the value ‘Enci pher
Onl y.” The error will look the same whether the extension in question is critical or not.

The solution, until pkg(1) learnsabout the value in question, isto remove the value from the extension, or remove
the extension entirely.

61 Packaging and Delivering Software with the Image Packaging System

Example 7: Unauthorized Use of Certificate

Example 7: Unauthorized Use of Certificate

pkg install: The certificate whose subject is

[/ C=US/ ST=Cal i f or ni a/ L=Menl o Par k/ O=pkg5/ CN=ch1_t a3/ enuni | Address=chl_t a3
coul d not be verified because it has been used i nappropriately.

The way it is used neans that the value for extension keyUsage must include
"Dl G TAL SI GNATURE' but the value was 'Certificate Sign, CRL Sign'.

The error above occurs when a certificate has been used for a purpose for which it was not authorized.
In this case, the certificate ch1l_t a3 has been used to sign the package. It's keyUsage extension means that it's
only valid to use that certificate to sign other certificates and CRL's.

Example 8: Unexpected Hash Value

pkg install: Certificate
/tnp/ips.test.7149/0/i mageO/ var/ pkg/ publ i sher/test/certs/0cel5c572961b7a0413b8390c90b7cac18ee9010
has been nodified on disk. Its hash value is not what was expected.

The error above means what it says.

The certificate at the provided path is used to verify the package being installed but the hash of the contents on disk
don't match what the signature action thought they should be.

Thisindicates that the certificate has been changed since it was last retrieved from the publisher.

The simple solution is to remove the certificate and allow pkg(1) to download the certificate again.

Example 9: Revoked Certificate

pkg install: This certificate was revoked:

[C=US/ ST=Cal i f or ni a/ L=Menl o Par k/ O=pkg5/ CN=cs1_chl t a4/ enmai | Address=csl chl_ta4
for this reason: None

The package involved is: pkg://test/exanpl e_pkg@.O0,5.11-0:20110919T205539Z

The error above indicates the certificate in question, which was in the chain of trust for the package to be installed,
was revoked by the issuer of the certificate.

62

Chapter 12

Chapter 12

Handling Non-Global Zones

This chapter describes how IPS handles zones and discusses those cases where package developers should be aware
of zones.

Packaging Considerations For Non-Global Zones

Developing packages which work consistently with zones usually involves little to no additional work. However, a
few situations call for close attention from developers. When considering zones and packaging there are two
guestions which need to be answered:

« Does anything in my package have an interface which crosses the boundary between the global zone and
non-global zones?

» How much of the package should be installed in the non-global zone?

Does The Package Cross the Global, Non-Global Zone boundary?

If a package delivers both kernel and userland functionality, and both sides of that interface must be updated
accordingly, then the package must be updated in any zones that contain that package whenever the package in the
non-global zone gets updated.

This can be done using a par ent dependency in the package being developed. If a single package delivers both
sides of the interface, then a par ent dependency on f eat ur e/ package/ dependency/ sel f will ensure
that the global zone and the non-global zones contain the same version of the package, preventing version skew
across the interface.

The dependency will also ensure that if the packageisin anon-global zone, then it is also present in the global zone.

If the interface spans multiple packages, then the package containing the non-global zone side of the interface must
contain apar ent dependency on the package which delivers the global zone side of the interface. The par ent
dependency is also discussed in Chapter 6.

How Much of a Package Should Be Installed in a Non-Global Zone?

If the answer to this question is"all of it" (and that's typically the case) then nothing needs to be done to the package
to enable it to function properly.

For consumers of the package, though, it can be reassuring to see that the package author properly considered zone
installation and decided that this package can function in a zone.

For that reason, developers should explicitly state that their package functions in both globa and non-global zones.
Thisis done by adding the following action to the manifest:

set nane=vari ant.opensol ari s. zone val ue=gl obal val ue=nongl obal

If no content in the package can be installed in a non-global zone (for example a package which only delivers kernel
modules or drivers), then the package should specify that it cannot be installed in a zone. Thisis done by adding the
following action to the manifest:

set nane=vari ant.opensol ari s. zone val ue=gl obal

If some but not all of the content in the package can be installed in a non-global zone, then take the following steps:

63 Packaging and Delivering Software with the Image Packaging System

Troubleshooting Zones

1. Use the following set action to state that the package can be installed in both global and non-global
Zones.

set nane=vari ant.opensol ari s. zone val ue=gl obal val ue=nongl obal

2. ldentify the actions that are only relevant in either the global or non-global zone. The global-zone-only
actions should have the attribute vari ant . opensol ari s. zone=gl obal . Similarly, actions that
only apply in non-global zones should have the attribute
vari ant . opensol ari s. zone=nongl obal .

If a package has a par ent dependency or has pieces which are different in global and non-global zones, it's
important to test that the package works as expected in the non-global zone as well as the global zone. If the package
has a parent dependency on itself, then the globa zone should configure the repository which delivers the
package as one of its origins. The package should be installed in the global zone first, and then in the non-global
zone for testing.

Troubleshooting Zones
Occasionally problems might be encountered when trying to install the package in the non-global zone.

Typically the first steps to take to attack the problem are to ensure that the following services are online in the global
zone:

esvc: /application/ pkg/ zones- proxyd: def aul t
esvc: /application/pkg/systemrepository: default

and that the following service is online in the non-global zone:

esvc: /application/ pkg/ zones- proxy-client:default

These three services provide publisher configuration to the non-global zone and a communication channel that the
non-global zone can use to make requests to the repositories assigned to the system publishers served from the global
zone.

Remember that you won't be able to update the package in the non-global zone, sinceit hasapar ent dependency
on itself. Initiating the update from the global zone and allowing the linked image code in pkg(1) to update the
non-global zone is the right solution.

Once the package isinstalled in the non-global zone, testing its functionality can begin.

If the package does not have a par ent dependency on itself, then it's not necessary to configure the publisher in
the global zone nor install the package there. Further, updating the package in the global zone will not update it in
the non-global zone, causing potentially unexpected results when testing the older non-global zone package.

The simplest solution in this situation is to make the publisher available to the non-global zone and install and update
the package from within the zone.

If the zone cannot access the publisher's repositories, then configuring the publisher in the global zone will alow the
zones-proxy-client and systemrepository services to proxy access to the publisher for the
non-global zone. In that case, it's still best to install and update the package in the non-global zone.

64

Chapter 13

Chapter 13

How IPS Features Are Used when Packaging the Oracle Solaris
oS

This chapter describes how Oracle uses IPS to package Oracle Solaris, and how the various dependency types are
used to define working package sets for the OS.

We include this chapter to give another concrete example of how IPS can be used to manage a complex set of
software, and talk about some of the IPS features that were used.

Versioning

In Chapter 3 we discussed the pkg. f nTi attribute, and talked about the different components of the version field,
describing how the version field can be used to support different models of software development.

This section explains how Oracle Solaris uses the version field, and is provided to give an insight into the reasons
why a fine-grained versioning scheme can be useful. Developers do not have to follow the same versioning scheme
as Oracle Solaris.

Given a sample package:
pkg://sol ari s/ systenicore-os@.5.11,5.11-0.175.0.0.0.2.1:20111019T070457Z

Thisishow theversionfield0. 5. 11, 5. 11-0. 175. 0. 0. 0. 2. 1: 20111019T070457Z is broken down:

05.11

The component version. For packages that are parts of Oracle Solaris, this is the OS major.minor version.
For packages developed outside, this is the upstream version. For example, the Apache Web Server in the
package:

pkg: / web/ server/apache-22@. 2. 20,5.11-0.175. 0. 0. 0. 2. 537: 20111019T122323Z
has the component version 2.2.20.

511

This is the build version. This is used to define the OS release that this package was built for and should
aways be 5.11 for packages created for Oracle Solaris 11.

0.175.0.0.0.2.1
Thisisthe branch version. Oracle Solaris uses the following notation for the branch version in this release:

* 0.175: Trunk identifier

* 0: Which Oracle Solaris Update this package is part of

* 0: The SRU (suppport repository update) number

* 0: The platform number, unused at present, but reserved for future use
 2: The build ID, used to indicate the build or respin

» 1: Thenightly ID

20111019T 0704572
Thisisthe timestamp, defined when the package was published.

65 Packaging and Delivering Software with the Image Packaging System

Incorporations

Incorporations

Oracle Solarisis delivered by a set of packages, with each group of packages constrained by an incorporation.

Each incorporation roughly represents the organization that developed each group of packages, though there are
some cross-incorporation dependencies within the packages themselves. The following is alist of the incorporation
packagesin Oracle Solaris:

* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:
* pkg:

/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati
/ consol i dati

/ consol i dat i

on/ SunVTS/ SUnVTS- i ncor por ati on

on/ X/ X-i ncorporation

on/ admi n/ adm n-i ncorporation

on/ cacao/ cacao-i ncorporation

on/ cde/ cde-i ncor poration

on/ cns/cns-incorporation

on/ dbt g/ dbt g-i ncor porati on

on/ deskt op/ deskt op-i ncor porati on
on/ deskt op/ gnone- i ncor por ati on

on/ gf x/ gf x-i ncor poration
on/install/install-incorporation
on/ips/ips-incorporation
on/javaljava-incorporation

on/ j dnk/j dmk-i ncorporation
on/110n/110n-i ncorporation

on/ | dons/ | dons-i ncorporation

on/ man/ man-i ncor porati on

on/ nspg/ nspg-i ncorporation

on/ nvi di a/ nvi di a-i ncor poration

on/ osnet/ osnet-i ncorporation

on/ sfw sfwincorporation
on/sic_teanfsic_teamincorporation
on/solaris _re/solaris_re-incorporation
on/ sunpr o/ sunpr o-i ncor porati on
on/ub_javavm ub_javavmi ncorporation
on/ user | and/ user| and-i ncor poration
on/ vpanel s/ vpanel s-i ncor poration

on/ xvm xvm i ncor poration

Each of these incorporations includes:

* genera package metadata

66

facet.version-lock.*

e i ncorporate dependencies, sometimes with vari ant . arch variants to denote dependencies that
are specific to a given architecture

«al i cense action that ensuresthat when the incorporation isinstalled, alicense is displayed
Each of the packages delivered on the system containsar equi r e dependency on one of these incorporations.
Oracle Solaris also includes a special incorporation called ent i r e.

Theentire incorporation constrains all of the individual incorporations together to the same build, by including
both requi re andi ncor por at e dependencies on each incorporation package, effectively defining a software
surface, such that all packages of Oracle Solaris get upgraded as a single group, or not at all.

facet.version-lock.*

Some of the incorporations, listed above use f acet . ver si on-1 ock. * facets, which were discussed in Chapter
6.

For example, looking at the pkg: / consol i dati on/ user| and/ user| and-i ncor porati on package, we
see:

depend type=i ncorporate \
fori=pkg:/library/python-2/subversion@l.6.16-0.175.0.0.0.2.537 \
facet.version-1ock.!library/python-2/subversion=true

depend type=i ncorporate \
fnri=pkg:/library/security/libassuan@.0.1-0.175.0.0.0.2.537 \
facet.version-lock.library/security/libassuan=true

depend type=i ncorporate \
fori=pkg:/library/security/openssl/openssl-fips-140@l.2-0.175.0.0.0.2.537 \
facet.version-lock.library/security/openssl/openssl-fips-140=true

depend type=i ncorporate fnri=pkg:/mail/fetchmil @.3.21-0.175.0.0.0.2.537 \
facet.version-1ock. mail/fetchmail =true

depend type=i ncorporate \
fori=pkg:/network/chat/ircii@.2006.7.25-0.175.0.0.0.2.537 \
facet.version-1ock. network/chat/ircii=true

depend type=i ncorporate \
fori=pkg:/print/cups/filter/foomatic-db-engi ne@.20080903-0.175.0.0.0.2.537 \
facet.version-lock.print/cups/filter/foomatic-db-engine=true

depend type=i ncorporate \
frri=pkg:/print/filter/gutenprint@.?2.4-0.175.0.0.0.2.537 \
facet.version-lock.print/filter/gutenprint=true

depend type=i ncorporate fnri=pkg:/runtinme/erlang@?2.2.5-0.175.0.0.0.2.537 \
facet.version-1lock.runtine/erlang=true

etc.

enabling the administrator to allow certain packagesto float free from the constraints of the incorporation package.

Notably, the ent i r e package also contains version-lock facets, allowing specific incorporations to be removed.
However, this can result in a system which is not covered by support, and those packages should only be unlocked
on advice from Oracle support personnel.

67 Packaging and Delivering Software with the Image Packaging System

Group Packages

Group Packages

Oracle Solaris defines several group packages which contain a series of gr oup dependencies (discussed in Chapter
6) enabling convenient installation of common sets of packages.

Thefollowing isalist of the group packagesin Oracle Solaris:

e pkg: / group/ f eat ure/ anp

* pkg: / group/ f eat ur e/ devel oper-gnu

e pkg: /group/feature/multi-user-desktop
* pkg: / group/ f eat ur e/ st or age- avs

« pkg: / group/ f eat ur e/ st or age- nas

* pkg: / group/ f eat ur e/ st or age- server

e pkg: / group/ f eat ure/ trust ed- deskt op

e pkg: / group/ system sol ari s-aut o-i nst al
* pkg: / group/ system sol ari s- deskt op

e pkg: / group/ system sol ari s-1 ar ge- server
e pkg: / group/ system sol ari s-snal | - server

One group package in particular is interesting, sol ari s- snal | - server, asitisused in the default Al manifest
(/usr/share/auto_install/manifest/zone default.xm)usedtoinsall sol ari s(5) zones.

Informational attributes

The following attributes are not necessary for correct package installation, but having a shared convention lowers
confusion between publishers and users.
info.classification
See Chapter 3 under "Set actions', and Appendix A.
info.keyword
A list of additional terms that should cause this package to be returned by a search.
info.maintainer

A human readable string describing the entity providing the package. For an individual, this string is
expected to be their name, or name and email.

info.maintainer-url
A URL associated with the entity providing the package.
info.upstream

A human readable string describing the entity that creates the software. For an individual, this string is
expected to be their name, or name and email.

info.upstream-url|

A URL associated with the entity that creates the software delivered within the package.
info.sour ce-url

A URL to the source code bundle, if appropriate, for the package.
info.repository-ur|

A URL to the source code repository, if appropriate, for the package.

68

Oracle Solaris Attributes

info.repository-changeset
A changeset ID for the version of the source code contained in info.repository-url.

Oracle Solaris Attributes

org.opensolaris.arc-caseid
One or more case identifiers (e.g., PSARC/2008/190) associated with the ARC case (Architecture Review
Committee) or cases associated with the component delivered by the package.

org.opensolaris.smf.fmri

One or more FMRIs representing SMF services delivered by this package. These attributes are
automatically generated by pkgdepend(1) for packages containing SMF service manifests.

Oracle Solaris Tags

variant.opensolaris.zone
See Chapter 12

Organization Specific Attributes

Organizations wanting to provide a package with additional metadata or to amend an existing package's
metadata (in a repository that they have control over) must use an organization-specific prefix. For example, a
service organization might introduce servi ce. exanpl e. com support -1 evel or
com exanpl e. servi ce, support-| evel todescribealevel of support for a package and its contents.

69 Packaging and Delivering Software with the Image Packaging System

Chapter 14

Chapter 14

Republishing Packages

This chapter describes how administrators can modify existing packages for local conditions.

Occasionaly administrators need to override attributes or modify packages they did not produce. This might be to
replace a portion of the package with an internal implementation, or something as simple as removing binaries not
permitted on systems.

While other packaging systems provide various mechanisms to "force" installation, 1PS focuses instead on making it
easy to republish an existing package with the desired modifications. This makes upgrade much easier since new
versions can be re-published with the same modifications. It also enables the rest of the packaging system to function
normally since instead of forcing IPS to ignore changes, packages reflect the correct, installed state of the system.

Of course, running a system with a republished package can cause issues with the support organization if any
connection is suspected between observed problems and the modified package.

The basic steps are as follows:

1. Use pkgrecv(1l) todownload the package to be re-published in a raw format to a specified directory.
All of the files are named by their hash value, and the manifest is named nani f est . Remember to set
any required proxy configurationintheht t p_pr oxy environment variable.

. Use pkgnogri fy(1) tomodify the manifest in the desired manner. Any timestamp from the internal
package FMRI should be removed to prevent confusion during publication asit isignored.

If changes are significant, running the resulting package through pkgl i nt (1) , asshown in Chapter 4, is
agood idea.

. Republish the package with pkgsend(1) . Note that this republication will strip the package of any
signatures that are present and will ignore any timestamp specified by pkg. f nti . To prevent awarning
message you might want to remove signature actionsin the pkgnogri fy(1) step.

If the administrator doesn't have permission to publish to the original source of the package, they can
creaste a repository with pkgrepo(1l), then use pkg set - publ i sher
--sear ch- bef ore=<ori gi nal > to have the client look for packages from the new repository
before falling back to the original publisher.

4. Optionally, sign the package using pkgsi gn(1) so that internal processes can be followed. Packages
should be signed before they are installed (even during testing) to prevent client caching issues.

70

Example 1: Change Package Metadata

Example 1. Change Package Metadata

Here's a simple example, where we change the pkg. summary field to be *"IPS has lots of features" instead of
whatever was there originally, and republish to our new repository:

$ nkdir republish; cd republish

$ pkgrecv -d . --raw -s http://pkg.oracl e.com sol ari s/rel ease package/ pkg
$ cd package* # package name contains a '/', and is url-encoded

$cd* # we pulled down just the | atest package by default

$ cat > fix-pkg

change val ue of pkg.sumary

<transform set name=pkg.sunmary -> edit value '.*'" "IPS has |lots of features">
del ete any signature actions

<transform si gnature -> drop>

renove tinestanp fromfnri so we get our own

<transform set nanme=pkg.fmi -> edit value ":20.+" "">

A

$ pkgnogrify mani fest fix-pkg > new manif est

$ pkgrepo create ./nypkg

$ pkgsend -s ./nypkg publish -d . new manifest

Example 2: Change Package Publisher
Another common use caseis to republish packages under a new publisher name.

This can be useful, for example, when consolidating the packages from several different development teams
repositories into a single repository for integration testing, a model that was used during development of Oracle
Solaris.

Again, this can be achieved using the steps in Example 1, using pkgr ecv - -raw, running apkgnogri fy(1)
transform on the resulting manifest, then republishing the transformed manifest.

A sample transform to change the publisher to "mypublisher” is:
<transform set nane=pkg.fmi -> edit value pkg://[~/]+/ pkg://nypublisher/>

Iterating over all packages in the repository can be done with a ssimple shell script, that uses the output from
pkgrecv --newest toprocessonly the newest packages from the repository.

In the script below, we've saved the transform above in afile called change- pub. nbg, and want to in republish
fromdevel opnent - repo toanew repository nypubl i sher, changing the package publisher along the way:

#!/ usr/ bi n/ ksh93

pkgrepo create nypublisher

pkgrepo -s mnypublisher set publisher/prefix=mypublisher

nmkdi r i ncom ng

for package in $(pkgrecv -s ./devel opnent-repo --newest); do
pkgrecv -s devel opnent-repo -d incom ng --raw $package

done

for pdir in incomng/*/* ; do
pkgnmogri fy $pdir/ mani fest change- pub. nrog > $pdir/ mani f est. newpub
pkgsend -s mypublisher publish -d $pdir $pdir/nanifest.newpub
done

71 Packaging and Delivering Software with the Image Packaging System

Example 1: Change Package Metadata

If necessary, we could modify this script to select only certain packages, make additional changes to the versioning
scheme of the packages, and show progress as it republishes each package, for example.

72

Appendix A

Appendix A
Classifying Packages

The following are defined values for the package attribute info.classification with scheme
org. opensol ari s. cat egory. 2008, used by the Package Manager GUI to display possible packages. A
typical entry as used in a package manifest might be:

set nane=i nfo. cl assification val ue=\
"org.opensol ari s. cat egory. 2008: Syst eml Adm ni strati on and Confi guration”

Note that category and subcategory are separated by a"/". Asusual, spaces in the attribute value require quoting.

Defined categories and subcategories for values are:
M eta Packages

* Builds

* Releases

 Developer Tools

* AMP Stack

* Office Tools
Applications

* Accessories

« Configuration and Preferences

» Games

* Graphics and Imaging

* Internet

* Office

* Panels and Applets

* Plug-ins and Run-times

+ Sound and Video

* System Utilities

* Universal Access
Desktop (GNOME)

73 Packaging and Delivering Software with the Image Packaging System

Appendix A

» Documentation

* File Managers

* Libraries

* Localizations

* Scripts

* Sessions

» Theming

* Trusted Extensions

» Window Managers
Development

C

o C++

* Databases

* Distribution Tools

* Editors

* Fortran

* GNOME and GTK+

* GNU

« High Performance Computing
* Integrated Development Environments
» Java

* Objective C

* Observahility

« Other Languages

« PHP

* Perl

* Python

* Ruby

« Source Code Management
* Suites

e System

* X11

Drivers

* Display
* Media

74

Appendix A

» Networking
* Other Peripherals
* Ports
 Storage
System

» Administration and Configuration
» Core
* Databases
* Enterprise Management
* File System
* Fonts
* Hardware
* Internationalization
* Libraries
* Localizations
* Media
» Multimedia Libraries
* Packaging
* Printing
* Security
* Services
* Shells
« Software Management
* Text Tools
* Trusted
* Virtualization
e X11
Web Services

» Application and Web Servers

* Communications

75 Packaging and Delivering Software with the Image Packaging System

Appendix B

Appendix B
Converting SVR4 Packages to IPS

This appendix covers conversion of packages from SV R4 to IPS and highlights some aspects of the conversion that
should be given special attention.

Chapter 4 goes into detail on how to package software in IPS. Developers with build environments that currently
produce SVR4 packages should convert their build processes following the example in that chapter, rather than
continuing to build SV R4 packages then converting those packages to IPS.

Aswith Chapter 4, the fundamental steps to packaging any softwarein IPS are:

» Generate a package manifest.

» Add necessary metadata to the generated manifest.
» Evaluate dependencies.

» Add any facets or actuators that are needed.

* Check the package with pkgl i nt (1) .

* Publish the package.

* Test the package.

These steps remain essentially the same for SVR4 to IPS conversion and we will not repeat their explanations. There
are afew steps that warrant more detailed explanations, and which are covered in this appendix.

In this appendix, a sample SV R4 package which is similar to the |PS package created in Chapter 4 is used.

Generate a Package Manifest

pkgsend gener at e hassupport for scanning several different sourcesin order to generate manifests. In Chapter
4, we used a simple directory as the source. The pkgsend(1) utility can also read SVR4 packages, consulting the
pkgmap(4) fileinthat package, rather than the directory inside the package that contains the files delivered.

While scanning the pr ot ot ype file, pkgsend(1) aso looks for entries that could cause problems when
converting the package to IPS. The pkgsend(1) utility reports those problems and prints the generated manifest.

In this example, a SVR4 package will be used that hasapkgi nf o file:

VENDOR=My Software Inc.

HOTLI NE=PI ease contact your |ocal service provider
PKG=MSFTnypkg

ARCH=i 386

DESC=A sanpl e SVR4 package of My Sanpl e Package
CATEGORY=syst em

NAME=My Sanpl e Package

BASEDI R=/

VERSI ON=11. 11, REV=2011. 10. 17. 14. 08

CLASSES=none manpage

PSTAMP=| i nn20111017132525

MSFT_DATA=Sone extra package netadata

76

Appendix B

and a corresponding pr ot ot ype file

pkgi nfo

copyri ght

posti nst al |

none opt 0755 root bin

none opt/mysoftware 0755 root bin

none opt/nysoftware/lib 0755 root bin

none opt/mysoftware/lib/mylib.so.1 0644 root bin
none opt/nmysoftware/ bin 0755 root bin

none opt/ mysoftware/ bin/ mycnmd 0755 root bin

none opt/nmysoftware/ man 0755 root bin

none opt/ nmysoftware/ man/ manl 0755 root bin

none opt/ mysoftware/ man/ manl/ nycnd. 1 0644 root bin

-0 0 —+a—+aoaoaq———

Running pkgsend(1) onthe SVR4 package built using these files, the following IPS manifest is generated:

$ pkgsend generate ./ MSFTnypkg | pkgfnt
pkgsend generate: ERROR script present in MSFTnmypkg: postinstal

set nane=pkg.sumary val ue="My Sanpl e Package"

set nane=pkg. description val ue="A sanple SVR4 package of My Sanpl e Package"

set nane=pkg.send. convert.nsft-data val ue="Sone extra package netadata"

dir path=opt owner=root group=bin node=0755

dir pat h=opt/ nmysoftware owner=root group=bin node=0755

dir pat h=opt/ nmysoftware/bin owner=root group=bin nbde=0755

file rel oc/ opt/ nysoftware/bin/mycnd pat h=opt/ nysoftware/bin/mycnd owner =root \
group=bi n node=0755

dir path=opt/nysoftware/lib owner=root group=bin npde=0755

file reloc/opt/mysoftware/lib/nylib.so.1l path=opt/nysoftware/lib/nylib.so.1\
owner =r oot group=bi n node=0644

dir pat h=opt/nysoftware/ man owner =r oot group=bi n nbde=0755

dir pat h=opt/ nmysoftware/ nman/ manl owner =r oot group=bi n nbde=0755

file rel oc/ opt/ nysoftware/ man/ manl/ mycnd. 1 \
pat h=opt / mysof t war e/ man/ manl/ nycnd. 1 owner =r oot group=bi n nbde=0644

| egacy pkg=MSFTnypkg arch=i 386 cat egory=system\
desc="A sanmpl e SVR4 package of My Sanpl e Package" \
hot | i ne="Pl ease contact your |ocal service provider" \
nane="My Sanpl e Package" vendor="My Software Inc." \
version=11. 11, REV=2011. 10. 17. 14. 08

license install/copyright |icense=MSFTnypkg. copyri ght

There are several points to note in the output above:

77 Packaging and Delivering Software with the Image Packaging System

Appendix B

* The pkg. sutmary and pkg. descri pti on attributes were automatically created, using the data
from the pkgi nf o file.

* A set action was generated from the extra parameter in pkgi nf o file. These are set beneath the
pkg. send. convert.* namespace, with the intention that developers will use pkgrogri fy(1)
transforms to convert these to a more appropriate attribute name.

* Al egacy actionwas generated, using data from the SV R4 pkginfo file.
*«Alicense actionwas generated, pointing to the copyright file used in the SVR4 package.
* An error message was emitted pointing to a scripting operation that can't be converted.

Checking again, we can see anon-zero return code from pkgsend gener at e, and the error message again:

$ pkgsend generate MsSFTnypkg > /dev/null

pkgsend generate: ERROR script present in MSFTmypkg: postinstall
$ echo $?

1

In this case, the packageisusing aposti nst al | script that can't be converted directly to an IPS equivalent. The
script must be manually inspected.

Thisistheposti nstal | scriptinthe package:

#! / usr/ bi n/ sh
catman - M/ opt/ nmysof t war e/ man

Its effects can easily be replaced by using arestart _fnri actuator pointing to an existing SMF service,
svc: /application/ man-i ndex: default as described in Chapter 4. Also, see Chapter 9 for further
discussion of actuators.

pkgsend generate will aso check for the presence of class-action scripts and will produce error messages
indicating which scripts should be examined.

It is impossible to give examples for every package scripting scenario that a developer can encounter when
converting SV R4 packages to IPS packages. In IPS, the needed functionality probably can be implemented by using
an existing action type or SMF service.

See Chapter 3 for details about the action types available, and Chapter 9 for a discussion on actuators.

78

Verify the Package

Verify the Package

Well assume that any additional package metadata needed has been added to the manifest, and that dependency
generation and resolution has been performed as per Chapter 4. Our next step is running pkgl i nt (1) on the
package.

A common source of errors when converting old SVR4 packages is mismatched attributes between directories
delivered in the SVR4 package and those delivered by other packages on the system.

In this case, the directory action for / opt in the sample manifest has different attributes than those defined by the
system packages.

Recall that in Chapter 3, we discussed the directory action, stating that all reference-counted actions must have the
same attributes. When trying to install the version of mypkg that has been generated so far, an error will occur:

pkg install mypkg

Creating Plan /

pkg install: The requested change to the systemattenpts to install multiple actions
for dir "opt' with conflicting attributes:

1 package delivers 'dir group=bin node=0755 owner=root path=opt"':
pkg: // mypubl i sher/ nypkg@l. 0, 5. 11-0: 20111017T020042Z

3 packages deliver 'dir group=sys node=0755 owner=r oot path=opt"':
pkg: //sol ari s/ devel oper/bui | d/ onbl d@. 5. 11, 5. 11-0. 175. 0. 0. 0. 1. 0: 20111012T010101Z
pkg://sol aris/systenfcore-os@.5.11,5.11-0.175.0.0.0.1.0:20111012T023456Z

These packages may not be installed together. Any non-conflicting set may
be, or the packages must be corrected before they can be install ed.

To catch the error before publishing the package, rather than at install-time, pkgl i nt (1) can be used with a
reference repository:

$ pkglint -c ./cache -r file:///scratch/solaris-repo ./nypkg.nf.res
Li nt engi ne setup...

PHASE | TEMS
4 4292/ 4292
Starting lint run...

WARNI NG opensol aris. mani fest001. 1 M ssing attribute 'org.opensol aris.consolidation" in pkg:/nypkg@.O0,5.11

ERROR pkgl i nt. dupacti on007 path opt is reference-counted but has different attributes across 5
duplicates: group: bin -> nypkg group: sys -> devel oper/buil d/onbld systenfcore-os systenf|dons/|donmsmanager

In particular, notice the error message it produces about /opt having incorrect attributes. The extral donmsmanager
package that pkgl i nt (1) reports was in the reference package repository, but was not installed on the test
system, so it did not show up in the errors reported previously by pkg i nstal | .

Other Considerations
Whileitis possible to install SV R4 packages directly on a system running IPS, we strongly recommend against this.

Apart from thel egacy action, described in Chapter 3, there are no links between the two packaging systems, and
they do not reference package metadata from each other.

IPS has commands such as pkg verify which can determine whether packaged content has been installed
correctly. However if another packaging system legitimately installs packages, or runs install scripts that modify
packaged files from IPS, errors might result.

Commands such as pkg fix orpkg revert could overwrite files that were delivered by a SVR4 package as
well as an IPS package, potentially causing the packaged applications to malfunction.

79 Packaging and Delivering Software with the Image Packaging System

Verify the Package

Similarly, commands such as pkg i nst al | , which normally check for duplicate actions and common attributes
on reference-counted actions, could also fail to detect potentia errors when files from a different packaging system
conflict.

With these pitfalls in mind, and given the comprehensive package development tool chain in IPS, developing IPS
packages instead of SV R4 packages is recommended for Oracle Solaris 11.

80

	Preface
	How this book is organized
	Chapter 1
	Design Goals and Concepts
	Software Self-Assembly
	Designing Your Package
	Naming Your Package
	Optimize for Client-Server Configurations
	Package by Functional Boundaries
	Package Along License or Royalty Boundaries
	Overlap in Packages
	Sizing Considerations

	Chapter 2
	Package Lifecycle
	Creation
	Publication
	Installation
	Updates
	Renaming
	Obsoletion
	Removal

	Chapter 3
	Basic Terminology
	Image
	Package
	Version

	Publisher
	Action
	Types of Actions
	File Actions
	Directory Actions
	Link Actions
	Hardlink Actions
	Set Actions
	Driver Actions
	Depend Actions
	License Actions
	Legacy Actions
	Signature Actions
	User Actions
	Group Actions

	Repository

	Chapter 4
	Packaging Software with IPS
	Generate a Package Manifest
	Add Necessary Metadata to the Generated Manifest
	Evaluate Dependencies
	Add Any Facets or Actuators That Are Needed
	Verify the Package
	Publish the Package
	Local File Repositories
	Package Archives

	Test the Package

	Chapter 5
	Installing, Removing, and Updating Software Packages
	How package changes are performed
	Check Input for Errors
	Determine the System End State
	Run Basic Checks
	Run the Solver
	Optimize the Solver Results
	Evaluate Actions
	Download Content
	Execute Actions
	Process Actuators

	Chapter 6
	Specifying Dependencies
	Dependency Types
	require
	require-any
	optional
	conditional
	group
	origin
	parent
	incorporate
	exclude

	Constraints and Freezing
	Constraints
	Freezing

	Chapter 7
	Allowing Variations
	Variants
	Facets

	Chapter 8
	Modifying Package Manifests Programmatically
	Transform Rules
	Include Rules
	Transform Order
	Packaged Transforms

	Chapter 9
	Causing System Change With SMF
	Actuators
	reboot-needed
	SMF Actuators

	Delivering an SMF Service
	A Service That Runs Once
	Self-Assembly Hints
	Timestamps
	Timeouts

	Chapter 10
	Advanced Update
	Renaming, Merging and Splitting Packages
	Renaming a Single Package
	Merging Two Packages
	One Package Absorbs Another
	Two Packages Are Renamed

	Splitting a Package

	Obsoleting Packages
	Preserving Editable Files During Package Renaming or Path Changes
	Moving Unpackaged Contents on Directory Removal or Rename
	Delivering Multiple Implementations of a Given Application
	Delivering Directories To Be Shared Across Boot Environments

	Chapter 11
	Signing Packages
	Errors Involving Signed Packages
	Example 1: Chain Certificate Not Found
	Example 2: Authorized Certificate Not Found
	Example 3: Untrusted Self-Signed Certificate
	Example 4: Signature Value Does Not Match Expected Value
	Example 5: Unknown Critical Extension
	Example 6: Unknown Extension Value
	Example 7: Unauthorized Use of Certificate
	Example 8: Unexpected Hash Value
	Example 9: Revoked Certificate

	Chapter 12
	Handling Non-Global Zones
	Packaging Considerations For Non-Global Zones
	Does The Package Cross the Global, Non-Global Zone boundary?
	How Much of a Package Should Be Installed in a Non-Global Zone?

	Troubleshooting Zones

	Chapter 13
	How IPS Features Are Used when Packaging the Oracle Solaris OS
	Versioning
	Incorporations
	facet.version-lock.*
	Group Packages
	Informational attributes
	Oracle Solaris Attributes
	Oracle Solaris Tags
	Organization Specific Attributes

	Chapter 14
	Republishing Packages
	Example 1: Change Package Metadata
	Example 2: Change Package Publisher

	Appendix A
	Classifying Packages

	Appendix B
	Converting SVR4 Packages to IPS
	Generate a Package Manifest
	Verify the Package
	Other Considerations

